

Things we will discuss in this lecture

Frumkin Effect:

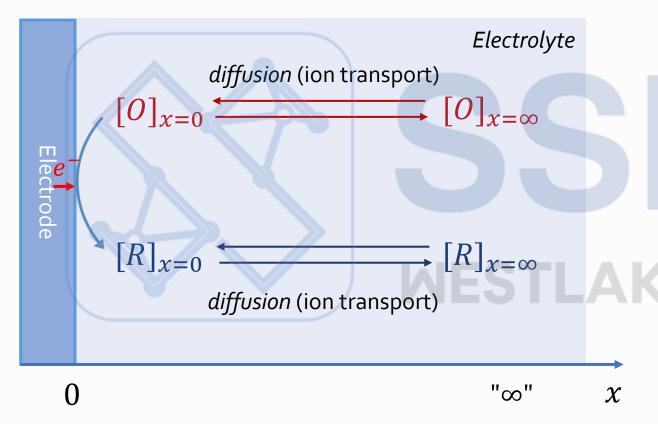
• What is the Frumkin Effect? How does the space charge layer affect the kinetics at electrode surfaces/interfaces?

Marcus Theory:

- What does the picture of Marcus Theory for charge transfer look like?
- What is reorganization energy and why is it important in the Marcus Thoery?

Goal of this lecture: you should be able to answer the questions above by the end of this lecture :)

Electrochemical reaction: Nernst equation



$$O + e^- \rightleftharpoons R$$

Equilibrium potential with fixed $[O]_{x=0}$ and $[R]_{x=0}$

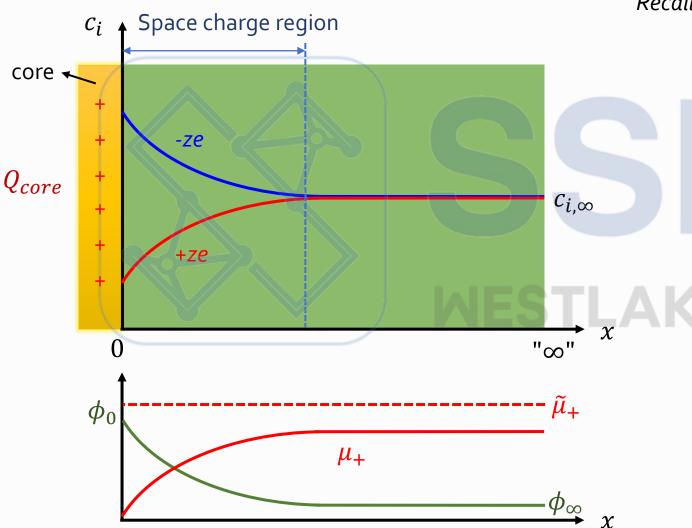
(concentrations are only evaluated at electrode/electrolyte interfaces)

Nernst Equation

$$E_{eq} = E^{0'} + \frac{RT}{F} \ln(\frac{[O]_{x=0}}{[R]_{x=0}}) = E^{0'} + \frac{RT}{F} \ln(\frac{[O]_{x=\infty}}{[R]_{x=\infty}})$$

Fast diffusion

The effect of space charge layer on electrode kinetics



Recall the concentration profile in the space charge layer:

$$c_{+}(x) = c_{i,\infty} \exp(-\frac{ze\phi(x)}{k_B T})$$

$$c_{-}(x) = c_{i,\infty} \exp(+\frac{ze\phi(x)}{k_B T})$$

Recall exchange current I_0

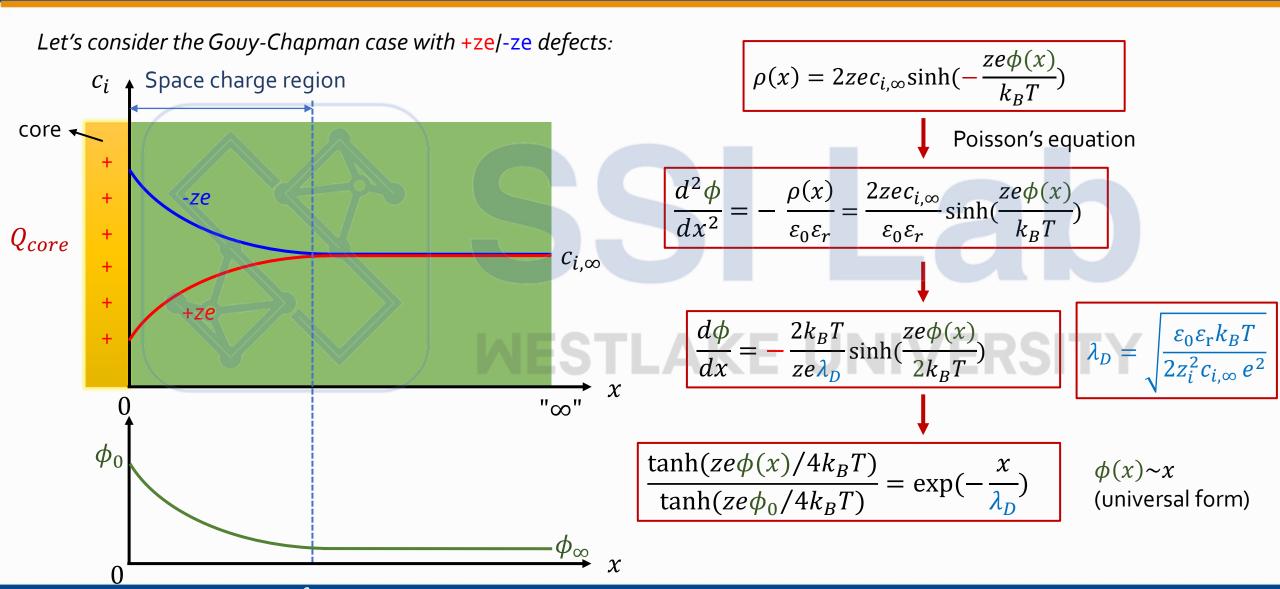
$$I_0 = FA k^0 ([O]_{x=0})^{1-\alpha} ([R]_{x=0})^{\alpha}$$

 I_0 is dependent on the concentrations at x = 0

at
$$x = 0$$

Space charge effect (so-called Frumkin effect)

Gouy-chapman case: potential profile

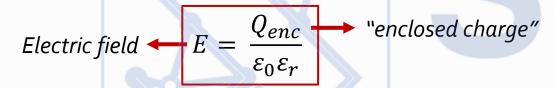


Gouy-chapman case: apply Gauss's Law to get Q_{core}

$$\frac{\tanh(ze\phi(x)/4k_BT)}{\tanh(ze\phi_0/4k_BT)} = \exp(-\frac{x}{\lambda_D})$$

 $\phi(x) \sim x$ (universal form)

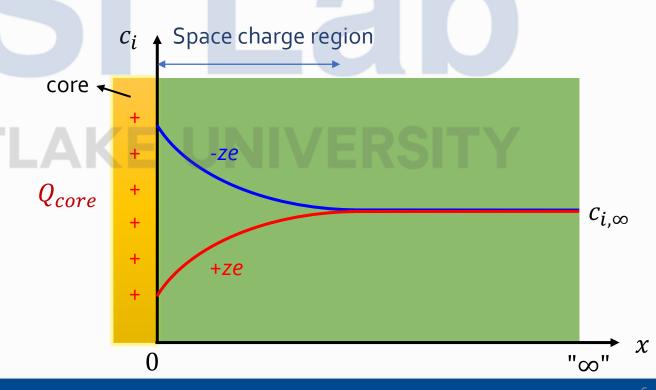
If $ze\phi_0 \ll k_BT$, we can linearize the equation by using $tanh x \sim x$:



At position x = 0:

$$E(0) = -\frac{d\phi}{dx}\bigg|_{x=0} = -\frac{2k_BT}{ze\lambda_D}\sinh(\frac{ze\phi_0}{2k_BT})$$

$$Q_{core} = \varepsilon_0 \varepsilon_r \frac{2k_B T}{ze \lambda_D} \sinh\left(\frac{ze \phi_0}{2k_B T}\right)$$



Gouy-chapman case: differential capacitance

We have established the correlation between charge \emph{Q}_{core} and potential $\emph{\phi}_0$

$$Q_{core} = \varepsilon_0 \varepsilon_r \frac{2k_B T}{ze \lambda_D} \sinh\left(\frac{ze \phi_0}{2k_B T}\right)$$

We can define differential capacitance:

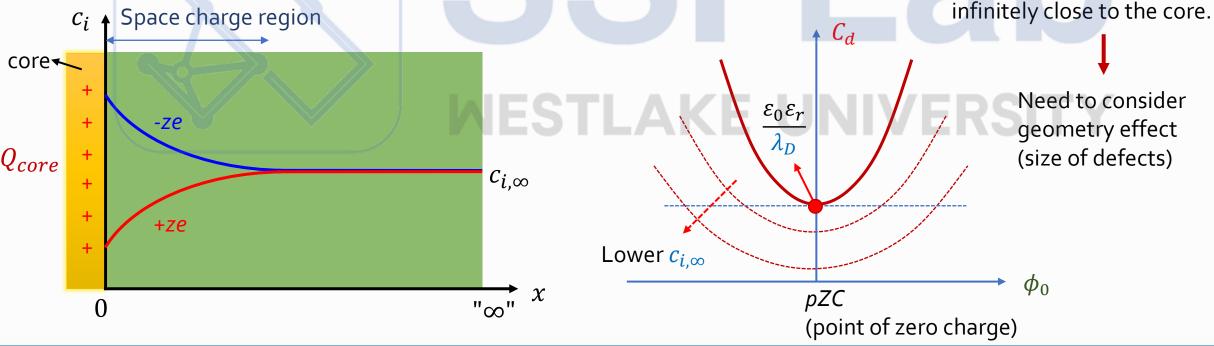
$$C_{d} = \frac{dQ_{core}}{d\phi_{0}} = \frac{\varepsilon_{0}\varepsilon_{r}}{\lambda_{D}} \cosh\left(\frac{ze\phi_{0}}{2k_{B}T}\right)$$

Problem:

Capacitance goes to infinite at high potentials

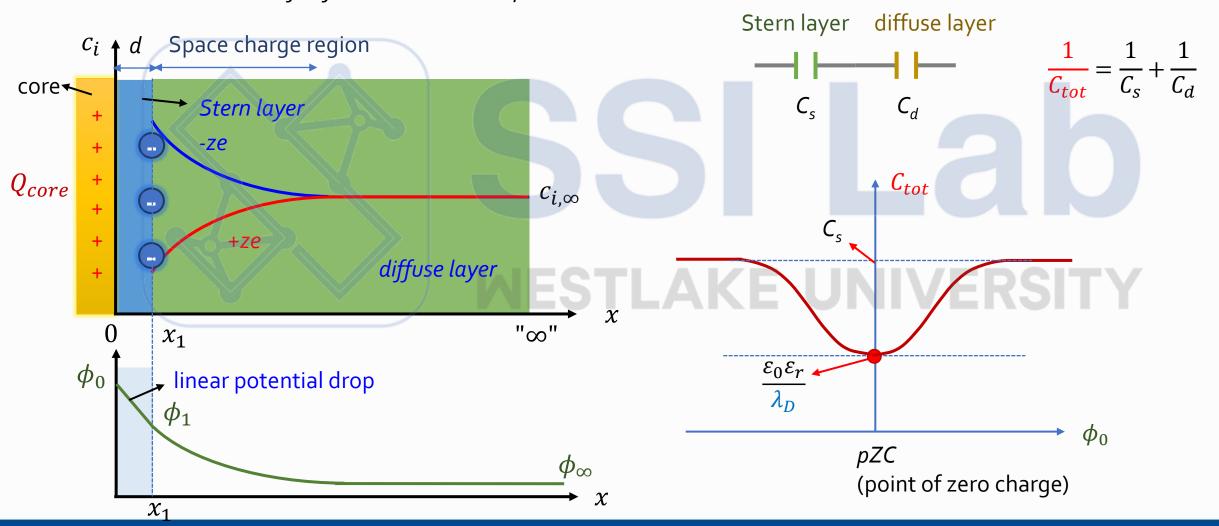
Origin:

Defects are treated as point charges that can be infinitely close to the core.

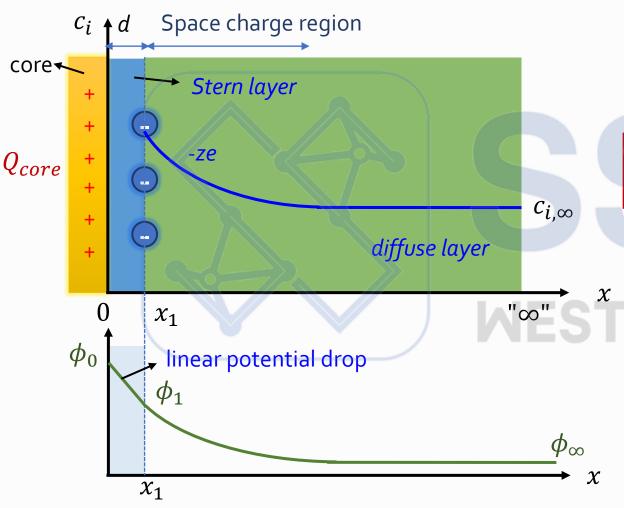


Gouy-chapman case: Stern layer

One must consider the size of defects to solve the capacitance issue:



Frumkin effect: the contribution of Stern and diffuse layers



$$O^{-(z-1)} + e^{-} \stackrel{k_c}{\rightleftharpoons} R^{-z}$$

$$I_{a} = FA\dot{R} = FAk_{a}[R]_{x=x_{1}} = FAk^{0}exp\left(\frac{(1-\alpha)F\Delta E}{RT}\right)[R]_{x=x_{1}}$$

• Concentration effect: $[R]_{x=x_1} = [R]_{x=\infty} \exp(-zF\phi_1/RT)$

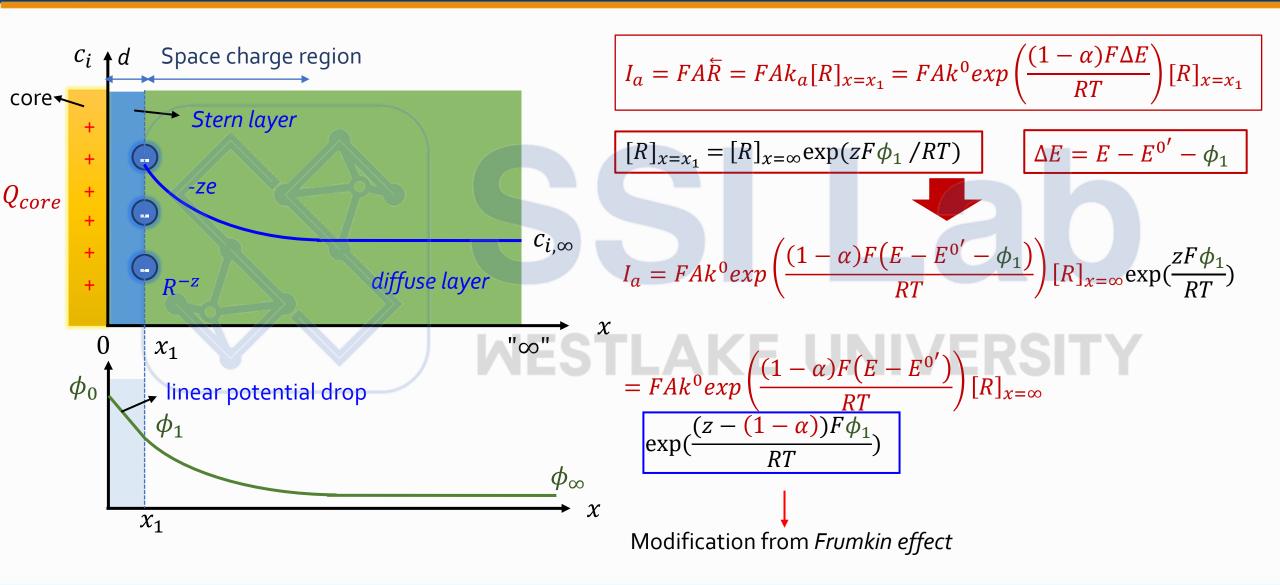
Potential effect:

w/o Stern layer:
$$\longrightarrow \Delta E = E - E^{0'}$$

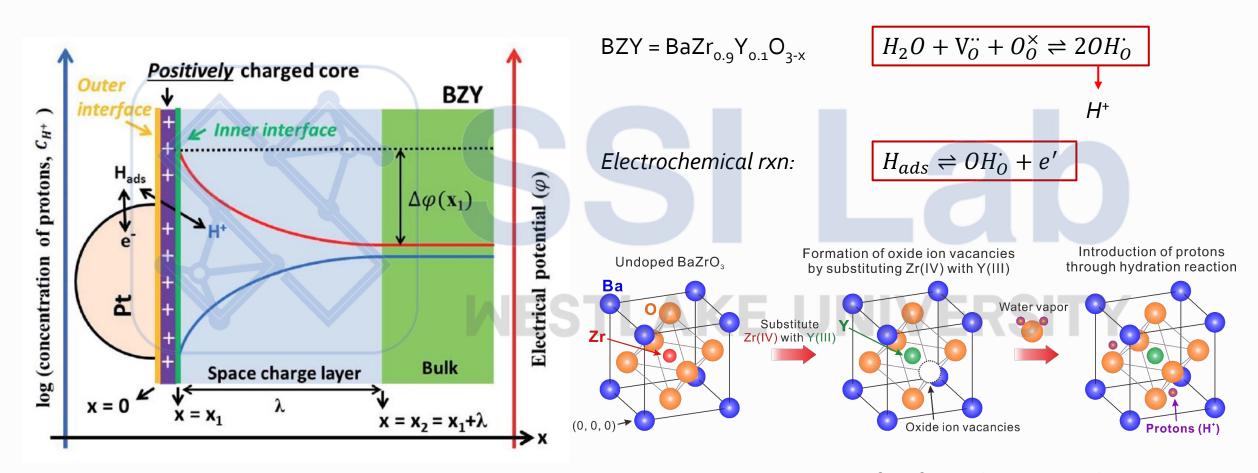
w/ Stern layer: $\longrightarrow \Delta E = E - E^{0'} - \phi_1$

The *Frumkin effect* is the combination of both effects from the change of concentration and potential!

Frumkin effect: the contribution of Stern and diffuse layers

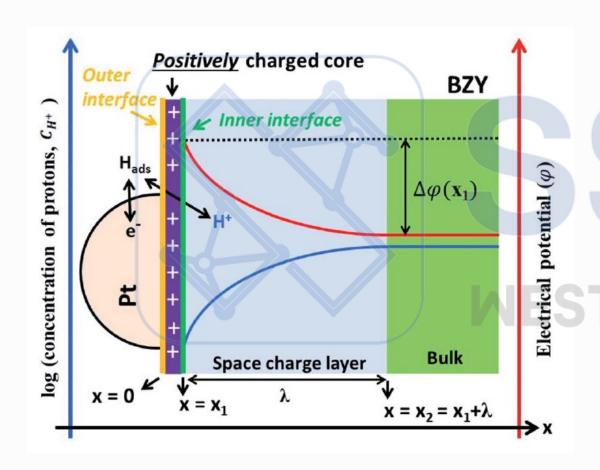


An example: hydrogen oxidation rxn (HOR) at Pt/BZY interfaces



Courtesy of Prof. Donglin Han (Soochow University)

An example: hydrogen oxidation rxn (HOR) at Pt/BZY interfaces



$$\mathsf{BZY} = \mathsf{BaZr}_{\mathsf{o.9}} \mathsf{Y}_{\mathsf{o.1}} \mathsf{O}_{\mathsf{3-x}}$$

 $H_2O + V_0^{\cdot \cdot} + O_0^{\times} \rightleftharpoons 2OH_0^{\cdot}$ H^+

Electrochemical rxn:

$$H_{ads} \rightleftharpoons OH_O + e'$$

- Due to the positive space charge core, the proton (OH_O) concentration at $x = x_1$ becomes depleted;
- This will lead to a modified exchange current density due to the Frumkin effect.

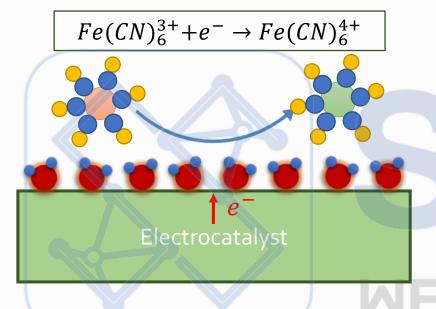
Exchange current

$$I_0 = FA k^0 ([OH_O]_{x=x_1})^{1-\alpha} \theta_H^{\alpha}$$

$$modified proton conc. \qquad H surf. coverage$$

Microscopic picture of charge transfer

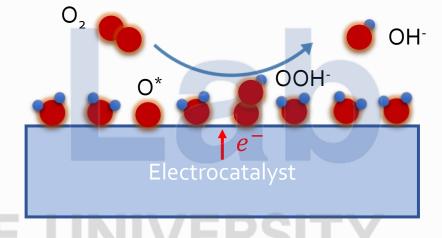
Outer Sphere Reaction



- The reactant (and the product) does not interact with the electrocatalyst surfaces;
- The original coordinate sphere maintained during the electrochemical reaction.

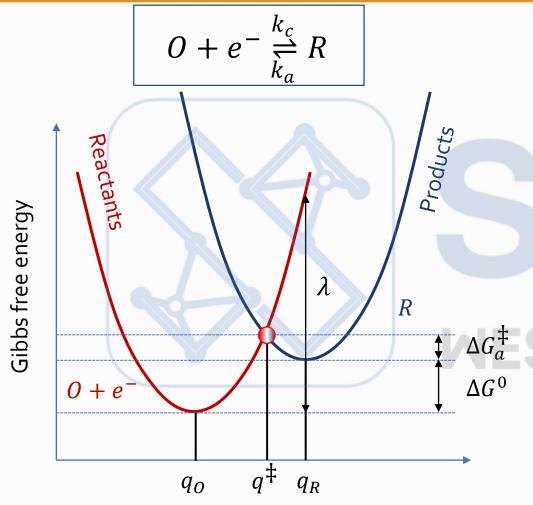
Inner Sphere Reaction

$$O_2 + 4e^- + 2H_2O \rightarrow 4OH^-$$



- The reactant, product and the intermediates interact strongly with the electrocatalyst surfaces;
- The original coordinate sphere greatly changed during the electrochemical reaction

Marcus theory: basic assumptions



Assumption: the free energy curves have quadratic form as a function of rxn coordinates.

$$\Delta G_O(q) = \frac{1}{2}k(q - q_O)^2$$

$$\Delta G_R(q) = \frac{1}{2}k(q - q_R)^2 + \Delta G^0$$

Quadratic (harmonic oscillators)

q: vibrational coordinate

Define reorganization energy

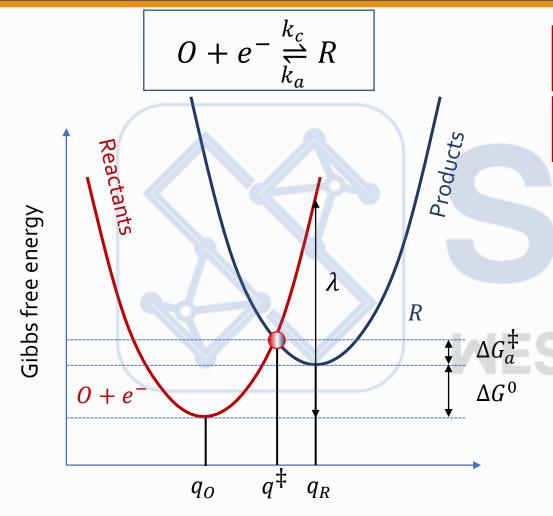
$$\lambda = \frac{1}{2}k(q_R - q_O)^2$$

Rudolph A. Marcus

The Nobel Prize in Chemistry 1992

"for his contributions to the theory of electron transfer reactions in chemical systems"

Marcus theory: cross-over point



$$\Delta G_O(q) = \frac{1}{2}k(q - q_O)^2$$

$$\Delta G_R(q) = \frac{1}{2}k(q - q_R)^2 + \Delta G^0$$

Quadratic (harmonic oscillators)

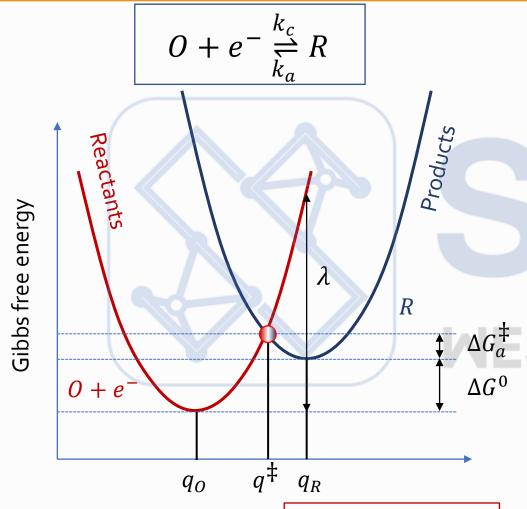
q: vibrational coordinate

Electron jumping from Reactants ($O + e^-$) to Products (R) must occur at cross-over point because of:

- Frank-Condon principle. Electron transfer occurs so rapidly (in a vibrational frequency) that no change in nuclear configuration can occur during the transfer. This requires that the transfer is a vertical line in the diagram.
 - Conservation of energy requires that the transition is a horizontal line on the diagram

Cross-over *point*

Marcus theory: the expression for the barrier



Define reorganization energy $\lambda = \frac{1}{2}k(q_R - q_O)^2$

$$\lambda = \frac{1}{2}k(q_R - q_O)^2$$

$$\Delta G_O(q) = \frac{1}{2}k(q - q_O)^2$$

$$\Delta G_R(q) = \frac{1}{2}k(q - q_R)^2 + \Delta G^0$$

Quadratic (harmonic oscillators)

q: vibrational coordinate

At $q = q^{\ddagger}$ (where the two parabolas intersect)

$$\frac{1}{2}k(q^{\ddagger} - q_0)^2 = \frac{1}{2}k(q^{\ddagger} - q_R)^2 + \Delta G^0$$

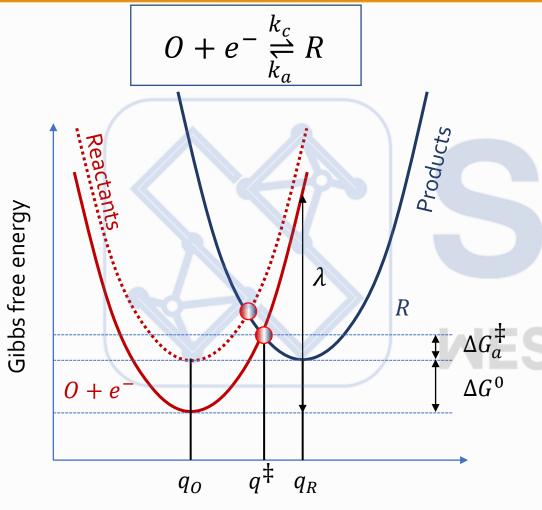
$$q^{\ddagger} = \frac{q_R + q_O}{2} + \frac{\Delta G^0 / k}{q_R - q_O}$$

$$\Delta G_c^{\ddagger} = \frac{1}{2}k(q^{\ddagger} - q_O)^2 = \frac{1}{2}k(\frac{q_R - q_O}{2} + \frac{\Delta G^0/k}{q_R - q_O})^2$$
$$= \frac{1}{4}\left[\frac{1}{2}k(q_R - q_O)^2\right](1 + \frac{2\Delta G^0}{k(q_R - q_O)^2})^2$$

$$\Delta G_c^{\ddagger} = \frac{\lambda}{4} (1 + \frac{\Delta G^0}{\lambda})^2$$

$$\Delta G_{c,a}^{\ddagger} = \frac{\lambda}{4} (1 \pm \frac{\Delta G^0}{\lambda})^2$$

Marcus theory: symmetric coefficient

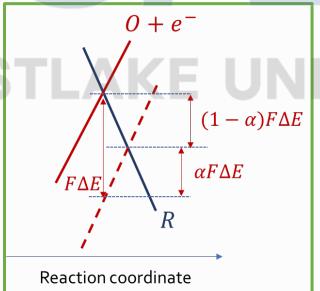


$$\Delta G_{c,a}^{\ddagger} = \frac{\lambda}{4} (1 \pm \frac{\Delta G^{0}}{\lambda})^{2} = \frac{\lambda}{4} (1 \pm \frac{F(E - E^{0})}{\lambda})^{2}$$

Reorganization energy

$$\lambda = \frac{1}{2}k(q_R - q_O)^2$$

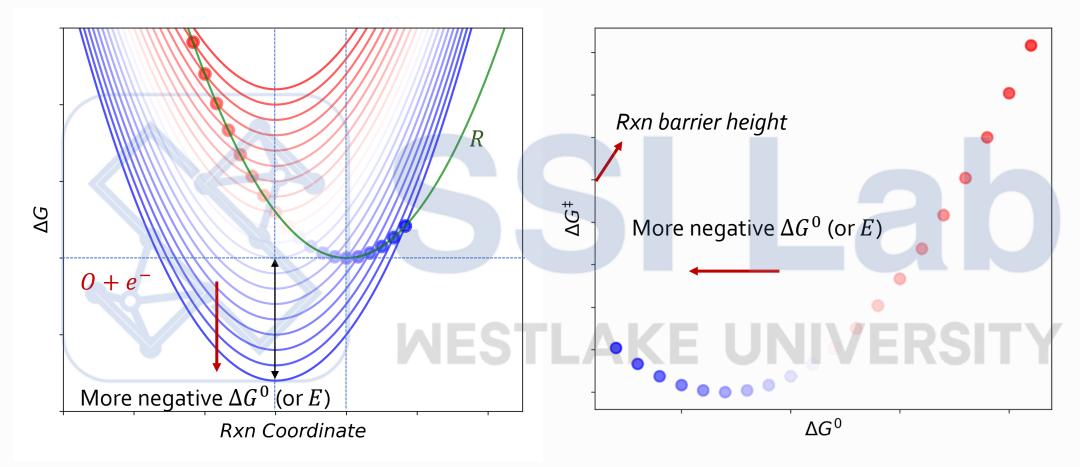
The energy required to transform the *nuclear configurations* in the *reactant* to that in the *product*



$$\alpha = \frac{1}{F} \frac{\partial \Delta G^{\ddagger}}{\partial E} = \frac{1}{2} + \frac{F(E - E^{0})}{2\lambda}$$

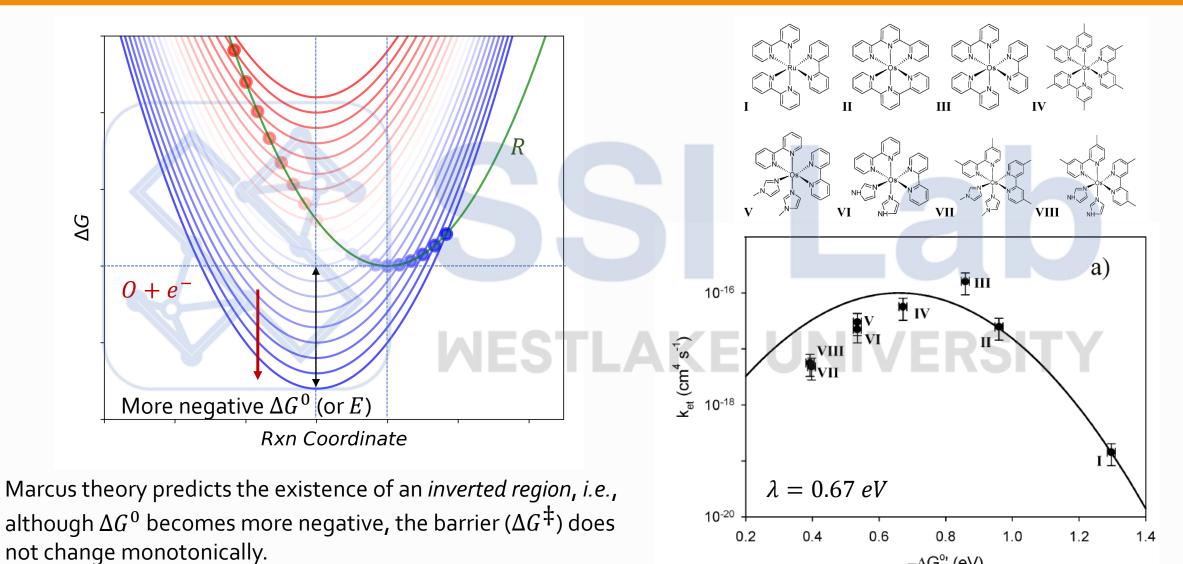
Symmetric coefficient α is **potential-dependent** predicted by using Marcus Theory

Marcus theory: inverted region



- In B-V eqn., rxn rate change monotonically with E ($\Delta G^0 = F(E E^0)$);
- Marcus theory predicts the existence of an *inverted region*, *i.e.*, although ΔG^0 becomes more negative, the barrier (ΔG^{\ddagger}) does not change monotonically.

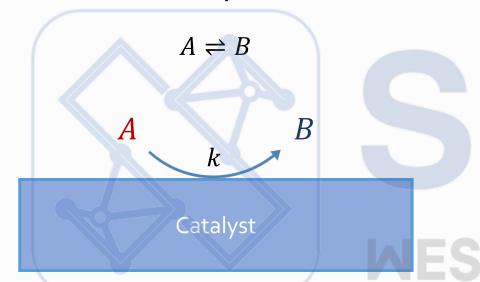
Marcus theory: inverted region



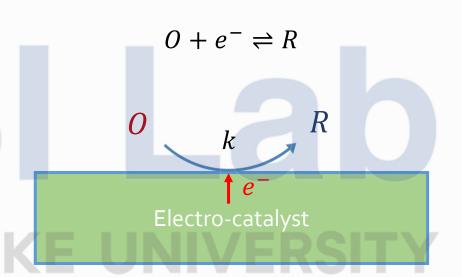
 $-\Delta G^{o_{\text{\tiny{I}}}}\left(eV\right)$

Go quantum...

Chemical Reaction (rxn) (Catalysis)



Electrochemical Reaction (Electro-catalysis)



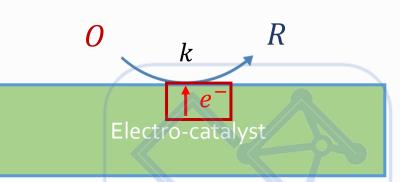
Reaction rate is determined by

- Concentration of reactant and product ([A] and [B])
- Temperature

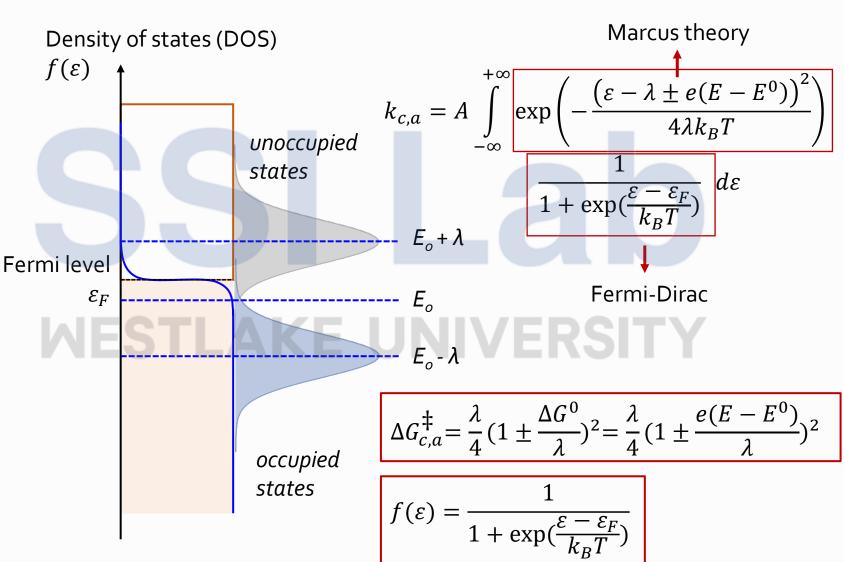
Reaction rate is determined by

- Concentration of reactant and product ([0] and [R])
- Temperature
- Electrode potential (which affects energy of electrons)
- Concentration of electrons (?) → quantum effect

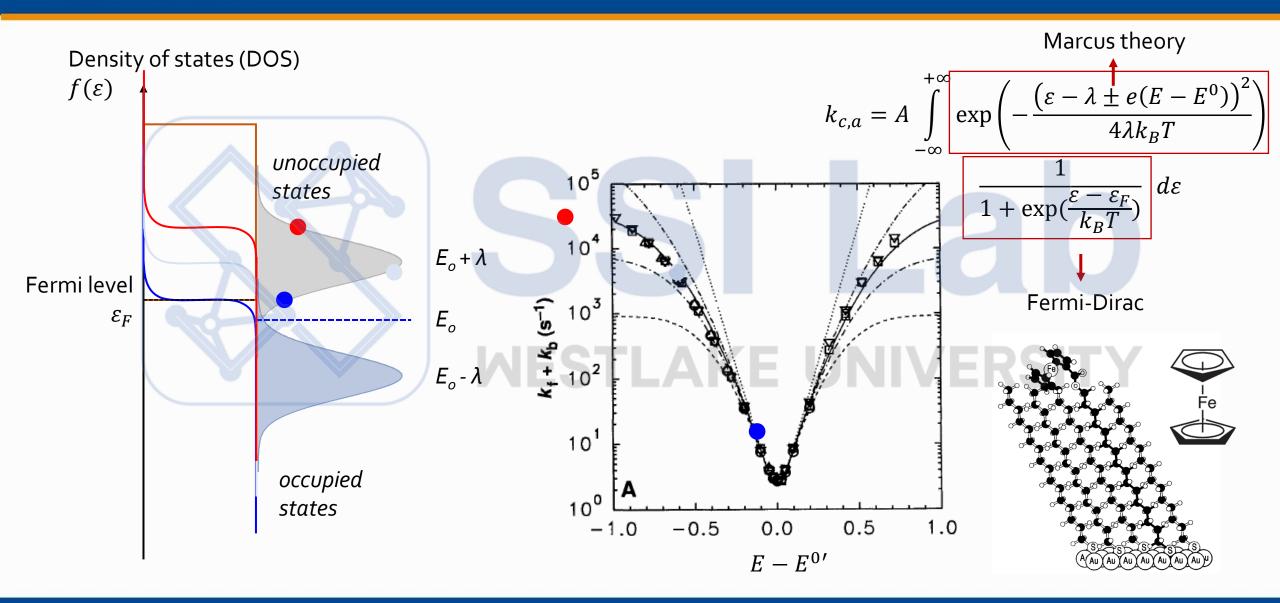
Marcus-Hush-Chidsey Theory: the effect of charge carrier distribution



- Up to now, we have largely ignored the details of electrons in kinetics;
- The availability of electrons (or electron holes) should have a large impact on electrode kinetics
- Fermi-Dirac distribution is used for description of electron/hole density.

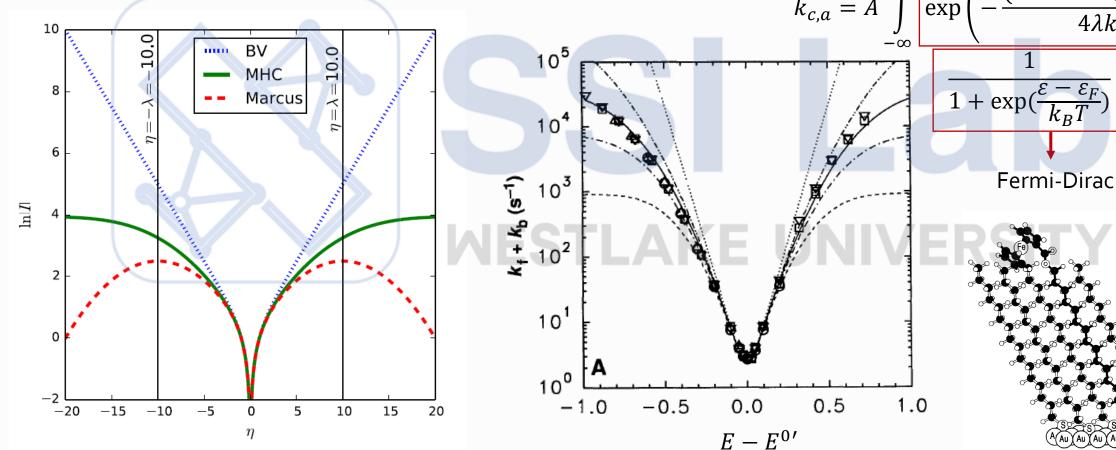


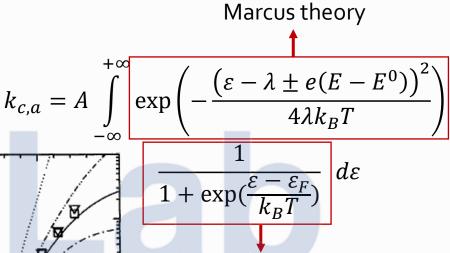
Marcus-Hush-Chidsey Theory: the effect of charge carrier distribution

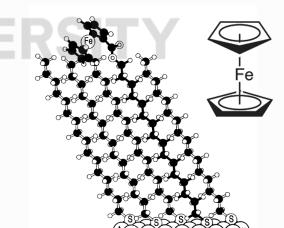


Marcus-Hush-Chidsey Theory: the effect of charge carrier distribution

- Marcus-Hush-Chidsey (MHC) theory predicts a flattened $\ln I \sim \eta$ curve (no inverted region for metals)
- Inverted region only exists when there is a bandgap (semiconductors)

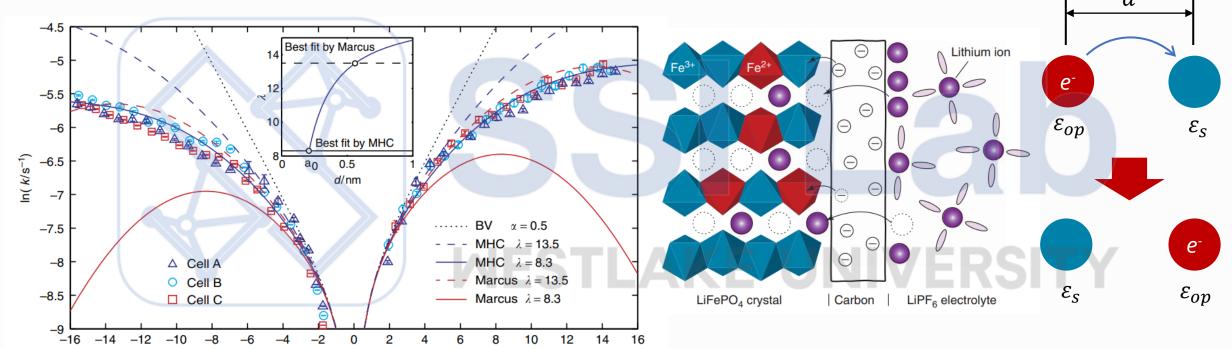






Marcus-Hush-Chidsey Theory: application in solid state

MHC theory was used to describe the electrode kinetics of Li⁺ intercalation into LiFePO₄;



$$\lambda = \lambda_{out} + \lambda_{in} \longrightarrow reorganization of$$
 $reactant (short-range)$

reorganization of solvent

$$\lambda \approx \lambda_{out} = \frac{e^2}{8\pi\varepsilon_0 k_B T} (\frac{1}{a_0} - \frac{1}{2d}) (\frac{1}{\varepsilon_{op}} - \frac{1}{\varepsilon_s})$$

radii of reactant

"Jump distance"

Born Energy of Solvation

Things we have discussed in this lecture

Frumkin Effect:

• What is the Frumkin Effect? How does the space charge layer affect the kinetics at electrode surfaces/interfaces?

Marcus Theory:

- What does the picture of Marcus Theory for charge transfer look like?
- What is reorganization energy and why is it important in the Marcus Thoery?

Goal of this lecture: you should be able to answer the questions above now (hopefully):)

