Fall 2022 Solid State Ionics

Homework 2

TA: Kaichuang Yang **Posted:** 2022/10/18 **Due:** 2022/11/05

Problem 1: "Job-sharing" mass transport

In a recent paper by Chen et al. (Nature **536**, 159–164 (2016)), the authors developed the concept of "job-sharing mass transport" and demonstrate ultrafast mass transport (even faster than NaCl in liquid water) at the interfaces between a pure ionic conductor and a pure electronic conductor (see Figure 1).

- In a mixed ionic and electronic conductor (MIEC), assume that the charge neutral species of
 mass transport is Ag. Write down the expression of chemical diffusivity D^δ_{Ag} based on the
 electronic/ionic conductivity (σ_e-/σ_{Ag}+) and the concentration of electronic/ionic species
 (c_e-/c_{Ag}+, assume the dilute limit).
- 2. In the expression you reached in 1, please specify which part is related to the chemical resistance R^{δ} and which part is related to the chemical capacitance C^{δ} ?

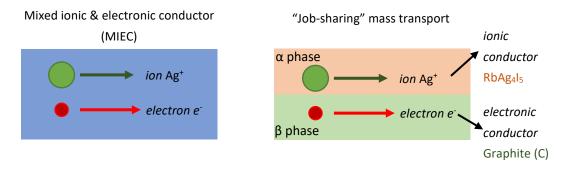


Figure 1 Chemical diffusion in MIEC and job-sharing composites.

- 3. Now let's consider the "job-sharing" case as shown in Figure 1 (Right). Assume the α phase is a pure ionic conductor RbAg₄I₅ with very high ionic conductivity σ_{Ag}^{α} but very low electronic conductivity σ_{e}^{α} . On the other hand, the β phase graphite is a pure electronic conductor with very high σ_{e}^{β} but very low σ_{Ag}^{β} , we will reach the expression of chemical diffusivity in this "job-sharing" composites with the steps below:
 - a) Write down the expression of ionic flux in α phase J_{Ag}^{α} and electronic flux in β phase $J_{e^-}^{\beta}$ based on the conductivities and the gradient of electrochemical potential of ionic

 $(\widetilde{\mu}_{Aa}^{\alpha}^{+})$ and electronic species $(\widetilde{\mu}_{e}^{\beta}^{-})$.

- b) Follow the process of deriving the chemical diffusivity shown in the lectures, try to reach the expression of the flux of charge neutral species Ag, by recognizing: $J_{Ag} = J_{Ag}^{\alpha} + I_{e}^{\beta}$. Notice in this case, the electrostatic potentials for α phase and β phase are no longer the same (i.e., $\phi^{\alpha} \neq \phi^{\beta}$). You can leave the $\phi^{\beta} \phi^{\alpha}$ term unchanged in this step.
- c) If we just focus on the contribution of conductivity (ignore the effect of other terms for a minute). Let's plug in some numbers: for RbAg₄I₅, $\sigma_{Ag^+}^{\alpha} = 0.27$ S/cm, $\sigma_{e^-}^{\alpha} = 3 \times 10^{-9}$ S/cm, while for graphite, $\sigma_{e^-}^{\beta} = 1250$ S/cm. If we compare the chemical diffusivity of RbAg₄I₅/graphite composite with that of pure RbAg₄I₅, how much enhancement do we expect from the conductivity term?
- d) Now let's look at the concentration (capacitance) term. For RbAg₄I₅, c_{Ag}^{α} \approx $10^{22}cm^{-3}$, while for graphite, $c_{e^{-}}^{\beta}\approx 10^{19}\,cm^{-3}$. Which concentration term will be dominate? Ionic or electronic?
- e) Finally let's calculate the $\phi^{\beta} \phi^{\alpha}$ term. Consider the simplified case in Figure 2. The length separating the two charged layers at the interfaces of α and β phase is s, which is on the same order magnitude of lattice spacing (~1 nm). Try to derive the expression of the $\phi^{\beta} \phi^{\alpha}$ term based on this simplification. Assume the relative permittivity ε_r = 5. Compare this term to the concentration terms in d), is the electrostatic term important or can it be safety ignored?

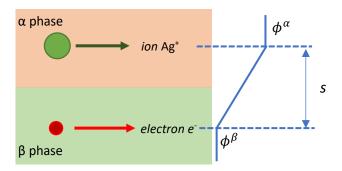


Figure 2 Interfacial electrostatic potential difference in job-sharing composites.

Problem 2: The exact solution of the potential profile in Gouy-Chapman case

In Lecture 7, we derive the potential profile in the Gouy-Chapman case with the assumption of a low ϕ_0 so that we can linearize the equation. In this problem, we are going to relax this

assumption and find the exact solution of the potential profile of the Gouy-Chapman case.

1. The same as we have discussed in Lecture 7, consider two mobile defects with opposite charge ze and -ze, a bulk concentration of c_{∞} and a positive core charge \mathcal{Q}_{core} . Express 1) the concentrations of these two mobile defects $(c_{+}(x))$ and $c_{-}(x)$ 2) charge density $\rho(x)$ 3) Poisson's equation as a function of position x and electrostatic potential ϕ .

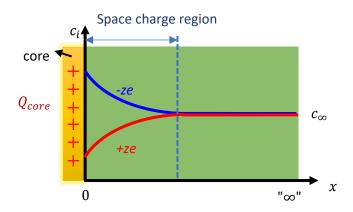


Figure 3 Space charge layer: Gouy-Chapman case

- 2. Solve the Poisson's equation analytically by taking the steps below:
 - a) Notice $\frac{d^2\phi}{dx^2} = \frac{1}{2} \frac{d}{d\phi} (\frac{d\phi}{dx})^2$, try to find the solution for $(\frac{d\phi}{dx})^2$
 - b) Consider the position far away from the space charge core, we should have: $\phi = 0$ and $\frac{d\phi}{dx} = 0$. Find the solution for $\frac{d\phi}{dx}$ based on this boundary condition. Think carefully which square root you should choose.
 - c) Try to solve the integral and find the solution for $\phi(x)$. You can simplify the solution by denoting the potential at x = 0 as ϕ_0 and defining the Debye length (also write down the expression for the Debye length). **Hint**: you might find this integral useful:

$$\int \frac{1}{\sinh(x)} = \ln\left(\tanh\left(\frac{x}{2}\right)\right) + C.$$

- 3. Use your favorite scientific graphing software/code (e.g., Originlab, Python Matplotlib, Matlab) to plot the following cases:
 - a) z = 1, $c_{\infty} = 1$ mM, $\varepsilon_r = 5$, plot normalized electrostatic potential profile $\phi(x)/\phi_0$ for 1) $\phi_0 = 10$ mV, 2) $\phi_0 = 100$ mV, 3) $\phi_0 = 1000$ mV in the same plot.
 - b) z = 1, $\varepsilon_r = 5$, $\phi_0 = 100$ mV, plot normalized electrostatic potential profile $\phi(x)/\phi_0$ with x/λ_D as x-axis for 1) $c_\infty = 10^{20}$ cm⁻³, 2) $c_\infty = 10^{21}$ cm⁻³, 3) $c_\infty = 10^{22}$ cm⁻³