Fall 2022 Solid State Ionics

Homework 3

Instructor: Qiyang Lu TA: Kaichuang Yang Posted: 2022/11/23 Due: 2022/12/04

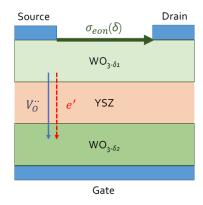
Problem 1: The Nernst term in the Butler-Volmer Equation

Consider the electrochemical reaction below:

$$O + e^{-} \underset{k_a}{\overset{k_c}{\rightleftharpoons}} R, \quad E^{0'} = 0 V$$

- 1. Express the current density j (j=I/A, I: current, A: electrode area) as a function of bulk concentration of O and R (c_O and c_R , unit: mol/L, assume that diffusion is fast), reaction rate constant k^0 (unit: cm/s) and the potential E with $E^{0'}$ as the reference ($\Delta E = E E^{0'}$).
- 2. Write down the Nernst equation correlating equilibrium potential E_{eq} with concentrations c_0 and c_R . Then rewrite the Bulter-Volmer (B-V) equation using overpotential $\eta=E-E_{eq}$. Define the exchange current density j_0 using the B-V equation rewritten.
- 3. If the temperature is fixed at 300 K and the symmetry coefficient α is fixed to 0.5, draw the $j \sim \eta$ curves with the numbers below using your favorite scientific graphing software/code (e.g., Originlab, Python Matplotlib, Matlab) with the range of potential $E = -0.3 \text{ V} \sim 0.3 \text{ V}$:
- a) If $c_O = c_R = 0.1$ mol/L, in a single plot, draw the $j \sim \eta$ curves with 1) $k^0 = 10^{-4}$ cm/s; 2) $k^0 = 10^{-5}$ cm/s; 3) $k^0 = 10^{-6}$ cm/s;
- b) If c_R = 0.1 mol/L, k^0 =10⁻⁴ cm/s, in a single plot, draw the $j\sim\eta$ curves with 1) $c_O=1$ mol/L; 2) $c_O=0.1$ mol/L; 3) $c_O=0.01$ mol/L;
- 4. Show that the ratio between anodic and cathodic current density (j_a/j_c) is **independent** on the symmetry coefficient α (so-called *de Donder relation*).

Problem 2: Phase separation in electrochemical ionic synapses



In a recent paper by Kim *et al.* (*Adv. Electron. Mater.* **2022**, 2200958), the authors fabricated an electrochemical ionic synapse with the structure shown as the figure in the left. The device has two symmetric WO_{3- δ} layers (δ means oxygen non-stoichiometry) with an oxygen ion conducting YSZ electrolyte layer in between. By applying an external voltage across the device, the oxygen ions can be moved from the bottom layer WO_{3- δ 2} to the top layer WO_{3- δ 1</sup> (or the reverse). Since the electronic conductivity σ_{eon} of WO_{3- δ 1} is dependent on δ , this device can be used as a memory}

device (synaptic device). However, the YSZ electrolyte has a very low but non-negligible

electronic conductivity. This means that after sufficient long time, the *chemical potential of oxygen* will be equilibrated for the two WO_{3- δ} layers, which can cause the volatility of the device. Kim *et al.* pointed out that the volatility is related to if WO_{3- δ} will go through phase separation with increasing δ .

- 1. Let's first consider the case without phase separation, which we will model using *ideal* lattice gas model. Start with a perfect WO₃ lattice (denote as x = 0), then we add oxygen vacancy (charge balanced by electrons) until a maximum non-stoichiometry δ_{max} is reached (denote as x = 1). Write down the quantitative relationship and sketch the entropy, the Gibbs free energy and the chemical potential as a function of x ($x = \delta/\delta_{max}$).
- 2. If an external voltage is applied so that $\delta_1 << \delta_2$ and $(\delta_1 + \delta_2)/\delta_{max} = 1$, the system will slowly be restored to equilibrium so that the chemical potential of the top and bottom WO_{3- δ} become the same. Show that this means $\delta_1 = \delta_2 = \delta_{max}/2$. (Assume the top and bottom layers are symmetric, and the total amount of oxygen vacancy in the system is fixed.) This means that the top WO_{3- δ} layer is **volatile** (forgetting).
- 3. We can also calculate the rate that the device is restored to equilibrium by taking the steps below:
 - a. The Faradaic current passing through the YSZ electrolyte can be modeled by using the Bulter-Volmer equation. The overpotential is the difference between the chemical potential at δ_1 (or δ_2 , again the device is symmetric) and the chemical potential at $\delta_{max}/2$. Write down the expression of current density j as a function of exchange current density j_0 , symmetry coefficient α and non-stoichiometry δ_1 .
 - b. Assume that the chemical diffusion in the WO_{3- δ} layer is fast, try to calculate the time needed for restoring equilibrium t_{eq} . Denote the thickness of each WO_{3- δ} layer as I and the volume of WO_{3- δ} unit cell as V.
- 4. Now let's work on the case with phase separation by using the **regular solution model** (non-ideal lattice gas model). Suppose that the non-zero enthalpy change is dependent on a positive interaction parameter h_0 . Again, write down the quantitative relationship and sketch the entropy, the Gibbs free energy and the chemical potential as a function of x ($x = \delta/\delta_{max}$).
- 5. For the phase separation case, explain why in this scenario if an external voltage is applied so that $\delta_1 << \delta_2$ and $(\delta_1 + \delta_2)/\delta_{max} = 1$, the system can stay with different δ for the top and bottom WO_{3- δ} layer. This means that now the top WO_{3- δ} layer is **non-volatile** (not forgetting).