

Things we will discuss in this lecture

Electronic defects:

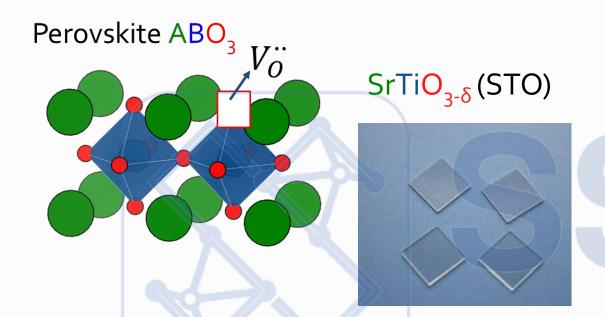
- What is the difference between electronic and ionic defects?
- A brief review on basic semiconductor physics: how to write the charge neutrality equation by using Kröger-Vink notations?

Brouwer diagrams:

- What question are we trying to solve by using the Brouwer diagram?
- What is the key assumption of Brouwer diagram (so-called Brouwer condition)?
- How does a typical Brouwer diagram for metal oxides look like? How can it be used to predict/understand the conductivity of materials?

Goal of this lecture: you should be able to answer the questions above by the end of this lecture :)

Ionic vs. Electronic defects



Perovskite ABO₃ structure; Cubic (ideal tolerance factor); ("Si for perovskite oxides")

At RT (300 K):
$$\mu_V = 1.43 \times 10^{-13} cm^2 V^{-1} s^{-1}$$
 (almost negligible); $\mu_n = 1.60 \ cm^2 V^{-1} s^{-1}$; $\mu_p = 1.27 \ cm^2 V^{-1} s^{-1}$

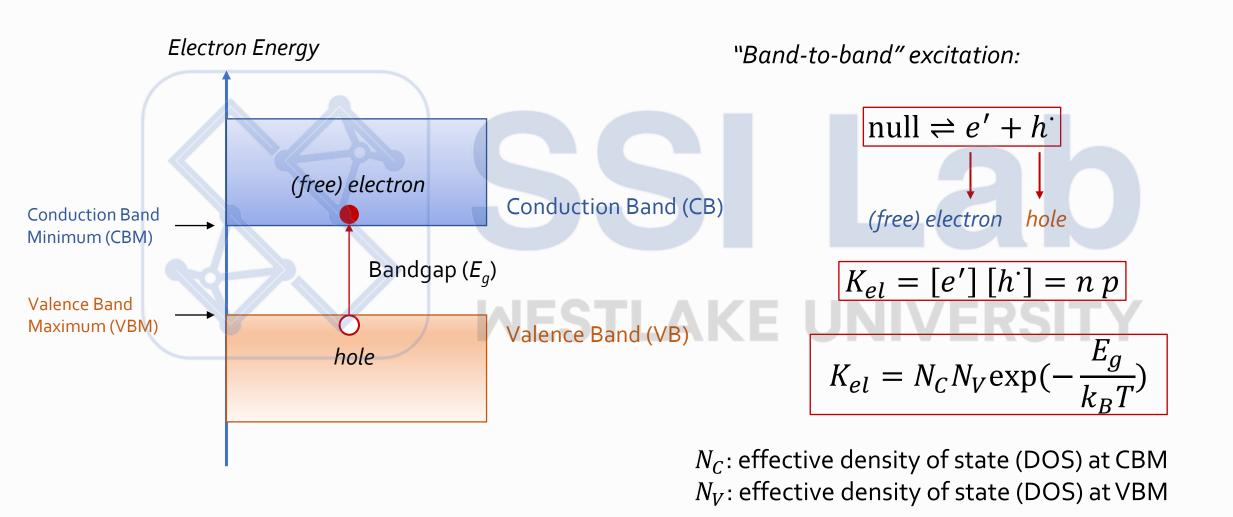
Compare *mobilities* of ionic and electronic defects

<i>lonic</i> (oxygen vacancy)	$\mu_V = 1.0 \times 10^4 (T^{-1}/K^{-1})$ $\times \exp\left(-\frac{0.86 \text{ eV}}{k_B T}\right) cm^2 V^{-1} s^{-1}$
Electronic (electrons & holes)	$\mu_n = 4.5 \times 10^5 (T/K)^{-2.2} cm^2 V^{-1} s^{-1}$ $\mu_p = 8.9 \times 10^5 (T/K)^{-2.36} cm^2 V^{-1} s^{-1}$

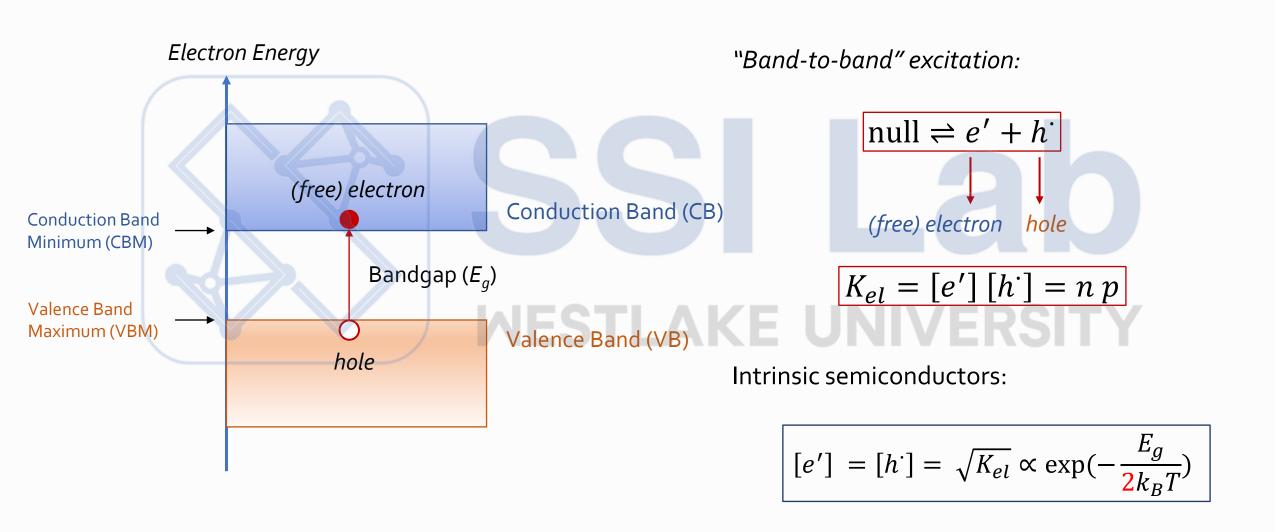
Guo, Fleig & Maier, SSI, 2002

At 500°C (773 K): $\mu_V = 3.19 \times 10^{-5} cm^2 V^{-1} s^{-1}$ (still very low, but can sustain ion motion); $\mu_n = 0.20 \ cm^2 V^{-1} s^{-1}$; $\mu_p = 0.14 \ cm^2 V^{-1} s^{-1}$

Review of semiconductor physics: intrinsic semiconductors

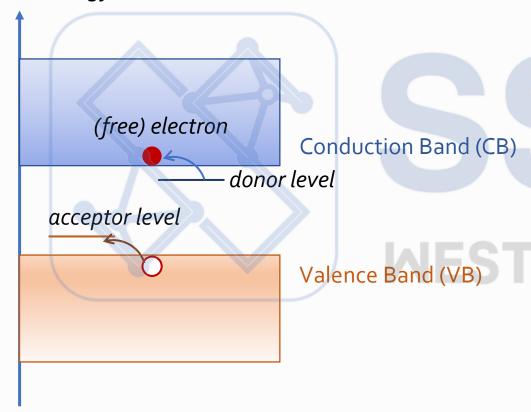


Review of semiconductor physics: intrinsic semiconductors, cont'd



Review of semiconductor physics: doped semiconductors

Electron Energy



Doping—charge neutrality condition:

$$[A'] + [e'] = [D] + [h]$$

D: donor, e.g., P_{Si} ;

A': acceptor, $e.g., B'_{Si}$;

Intrinsic semiconductors:

$$[e'] \approx [h] \gg [A'] \gg [D]$$

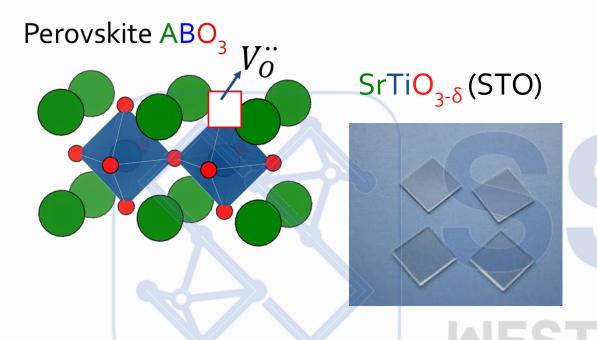
p-type semiconductors:

$$[A'] \approx [h] \gg [e'] ([D] \approx 0)$$

n-type semiconductors:

$$[D^{\cdot}] \approx [e'] \gg [h^{\cdot}] ([A'] \approx 0)$$

Charge neutrality considering both ionic and electronic defects



Note: even un-doped "pure" $SrTiO_3$ single crystal contains acceptor dopants such as Mn, Al, Fe, Mg etc. (usually on the level of ~100 ppm, e.g. Al'_{Ti} , Mg''_{Ti})

Electronic defects: [e'], [h]

(Intrinsic) ionic defects: $[V_O^{"}]$, $[O_i^{"}]$ (uncommon), $[Ti_i^{"}]$ (uncommon), $[V_{Sr}^{"}]$, $[Sr_{Ti}^{"}]$ (anti-site defects)

(Extrinsic) ionic defects: $[Al'_{Ti}]$, $[Mg''_{Ti}]$

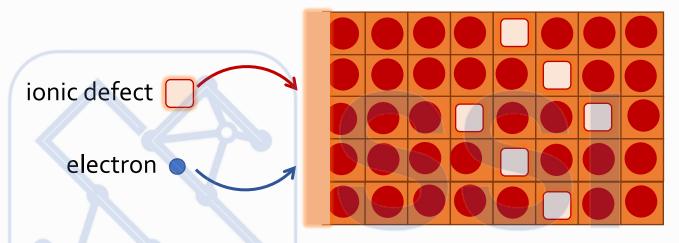
Charge neutrality considering both ionic and electronic defects:

$$[e'] + 2[V''_{Sr}] + 2[Sr''_{Ti}] + 2[O''_{i}] = [h'] + 2[V''_{O}] + 4[Ti''_{i}]$$

- Usually, it is very difficult to solve the equation w/ these many unknowns.
- The common practice is to ignore some defects with very low concentrations by dividing the chemical potential range into different regimes.

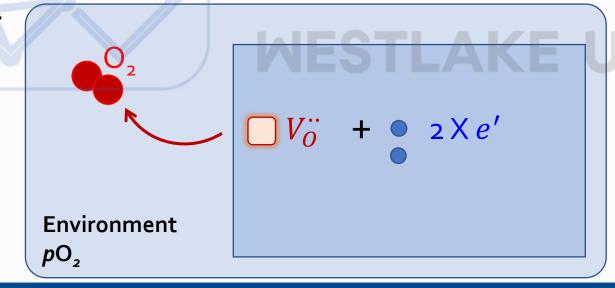
How to tune defect concentration?

Surfaces/Interfaces



- = lattice site
- = ionic defect (e.g., oxygen vacancy, lithium ion vacancy...)

Example:



Metal Oxide MO_{1-x}

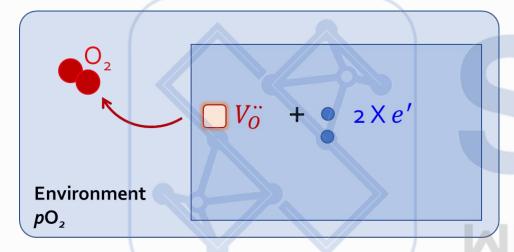
$$O_0^{\times} \leftrightharpoons V_0^{\cdot \cdot} + 2e' + 1/2O_2$$

$$\mu_{0} = 1/2 \,\mu_{0_{2}}$$

$$\mu_{0_{2}} = \mu_{0_{2}}^{0} + RT \ln(p_{0_{2}}/p_{0_{2}}^{0})$$

Summary of defect chemical reactions

Example: Metal Oxide MO_{1-x}



Assumption: metal cations (M) are immobile (usually true, since the migration of cations is much more difficult compared with anions)

Defect reactions and mass action laws:

$$null \rightarrow O_i^{\prime\prime} + V_O^{\cdot\cdot}$$

$$K_F = [O_i^{\prime\prime}][V_O^{\cdot\cdot}]$$

$$null \rightarrow e' + h$$

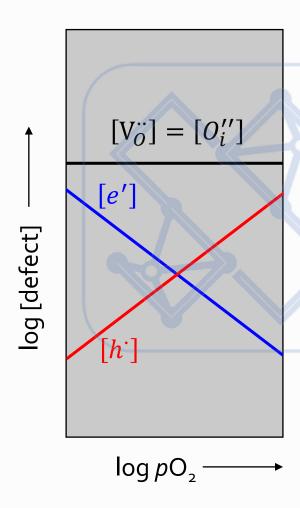
$$K_{el} = [e'][h]$$

Oxygen Exchange
$$O_0^{\times} \leftrightharpoons V_0^{\cdot \cdot} + 2e' + 1/2O_2$$
 $K_0 = \frac{p_{O_2}^{-1/2}[V_0^{\cdot \cdot}][e']^2}{[O_0^{\times}]}$

Electroneutrality also applies
$$[e'] + 2[O''_i] = [h] + 2[V''_o]$$

In principle, one can solve for four unknowns using these four equations, but it is much easier to ignore the minority defects with low enough concentration. **Brouwer condition**: only two majority defects with opposite charges matter.

川西湖大學 The Brouwer diagram: the log[]~log pO, plot



Regime I: "Intrinsic" regime

The majority charge carriers are ionic defects

$$[V_0^{"}] \gg [h^{"}], [O_i^{"}] \gg [e^{"}]$$

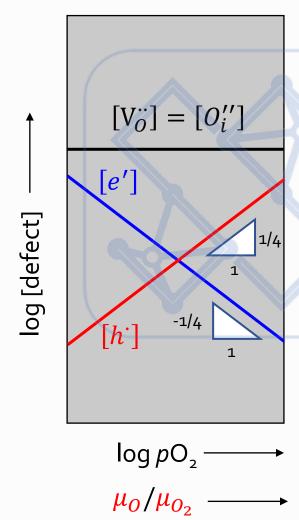
Electroneutrality
$$[e'] + 2[O''_i] = [k] + 2[V''_o]$$

$$null \to O_i^{"} + V_O^{"}, K_F = [O_i^{"}][V_O^{"}] \longrightarrow [O_i^{"}] = [V_O^{"}] = \sqrt{K_F}$$

$$O_O^{\times} = V_O^{\cdot \cdot} + 2e' + 1/2O_2$$
 $K_O = \frac{p_{O_2}^{1/2}[V_O^{\cdot \cdot}][e']^2}{[O_O^{\times}]}$

$$[e'] = \sqrt{\frac{K_O}{p_{O_2}^{1/2}[V_O^{"}]}} = p_{O_2}^{-1/4} K_O^{1/2} K_F^{-1/4} \propto p_{O_2}^{-1/4}$$

J 西湖大學 Regime I:"Intrinsic" regime



Regime I: "Intrinsic" regime

The majority charge carriers are ionic defects

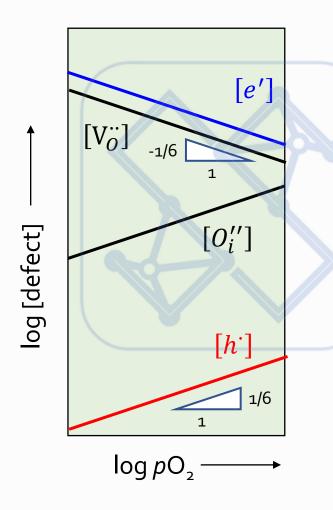
$$[e'] = \sqrt{\frac{K_O}{p_{O_2}^{1/2}[V_O^{"}]}} = p_{O_2}^{-1/4} K_O^{1/2} K_F^{-1/4} \propto p_{O_2}^{-1/4}$$

$$null \rightarrow e' + h', K_{el} = [e'][h'] \longrightarrow [h'] \propto p_{0_2}^{-1/4}$$

Notes:

- A "small" change of oxygen chemical potential can lead to a large change in the concentration of electronic defects;
- *n-type to p-type* transition can be triggered by changing pO_2

Regime II: Oxygen-poor



Regime II: "oxygen-poor" regime

The majority charge carriers are $[V_0^n] \& [e']$

$$[V_0^{"}] \gg [h^{"}], [e'] \gg [O_i^{"}]$$

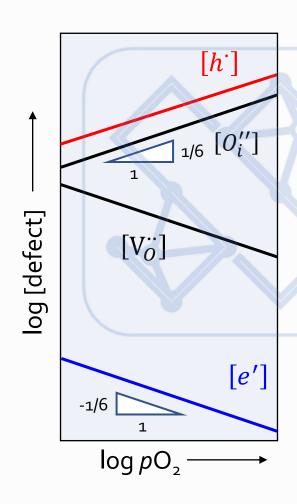
Electroneutrality
$$[e'] + 2[\emptyset_i''] = [h'] + 2[V_o'']$$

$$K_{O} = \frac{p_{O_{2}}^{1/2}[V_{O}^{"}][e']^{2}}{[O_{O}^{\times}]} \implies [V_{O}^{"}] \propto p_{O_{2}}^{-1/6}, [e'] \propto p_{O_{2}}^{-1/6}$$

$$K_{el} = [e'][h] \implies [h] \propto p_{O_2}^{1/6}$$

$$K_F = [O_i^{\prime\prime}][V_O^{\cdot\cdot}] \implies [O_i^{\prime\prime}] \propto p_{O_2}^{1/6}$$

Regime III: Oxygen-rich



Regime III: "oxygen-rich" regime

The majority charge carriers are $[O_i''] \& [h]$

$$[h^{\cdot}] \gg [V_0^{\cdot \cdot}], [O_i^{\prime \prime}] \gg [e^{\prime}]$$

Electroneutrality
$$[e'] + 2[O''_i] = [h] + 2[V'_0]$$

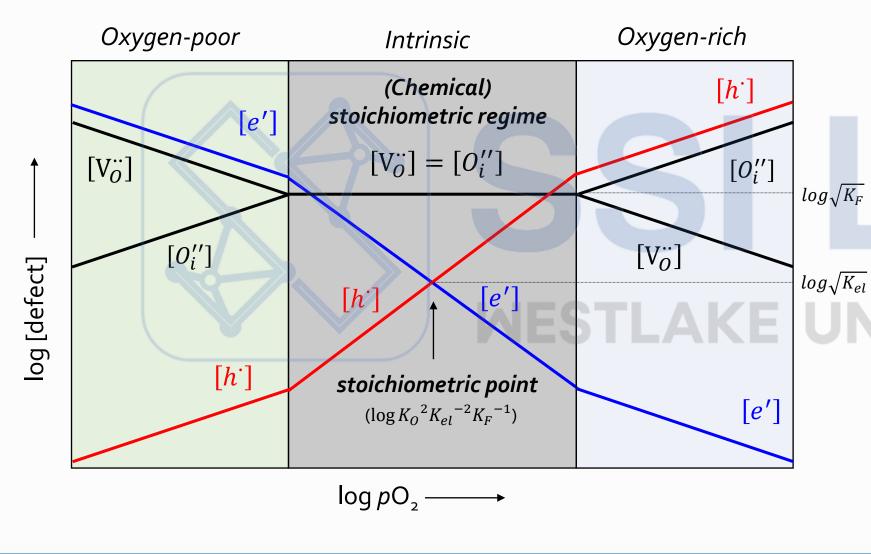
It is more convenient to rewrite the oxygen incorporation reaction in this case:

$$\frac{1}{2}O_2 = O_i'' + 2h$$

$$K_O = \frac{[O_i''][h]^2}{p_{O_2}^{1/2}} \implies [O_i''] \propto p_{O_2}^{1/6} \quad [h] \propto p_{O_2}^{1/6}$$

$$K_{el} = [e'][h] \Rightarrow [e'] \propto p_{O_2}^{-1/6}$$
 $K_F = [O''_i][V_O^{"}] \Rightarrow [V_O^{"}] \propto p_{O_2}^{-1/6}$

Combine the three regimes together: a prototypical Brouwer diagram of metal oxides



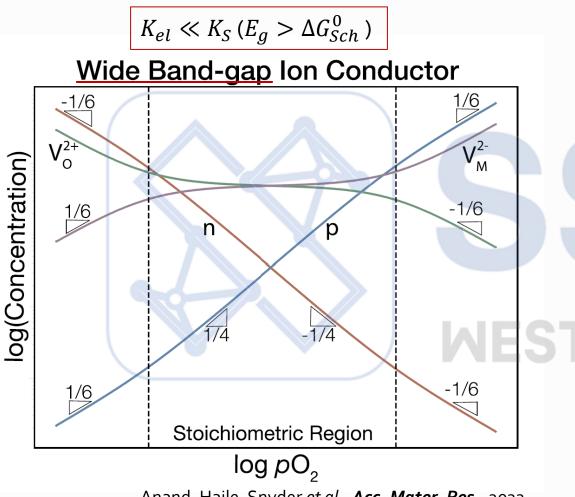
Note:

- We only considered intrinsic Frenkel pairs \rightarrow can be extended to **extrinsic ionic defects** or **Schottky pairs** $(V_O^{"} + V_M^{"})$;
- The x-axis can be expressed by either log pO₂ or chemical potential of oxygen gas/neutral oxygen;
- The existence of a stoichiometric point.

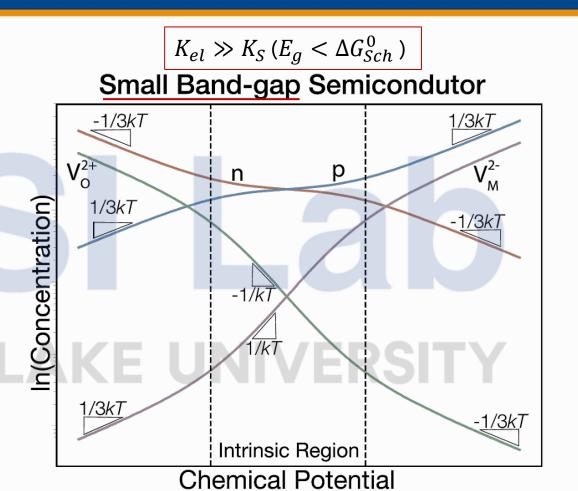
Metal Oxide MO_{1+δ}

$$\delta = [O_i^{\prime\prime}] - [V_O^{\cdot\cdot}]$$

More "realistic" Brouwer diagram w/ Schottky pairs or extrinsic ionic defects



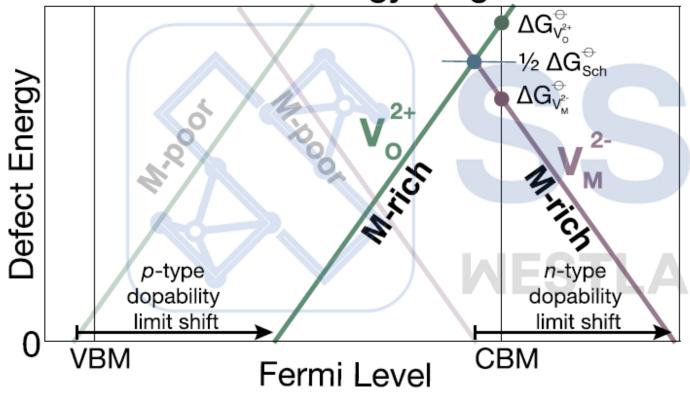
Anand, Haile, Snyder et al., Acc. Mater. Res., 2022



 $\mu_{0} = 1/2 \,\mu_{0_{2}}$ $\mu_{0_{2}} = \mu_{0_{2}}^{0} + RT \ln(p O_{2}/p O_{2}^{0})$

Another way of expressing formation of defects

Defect Energy Diagram



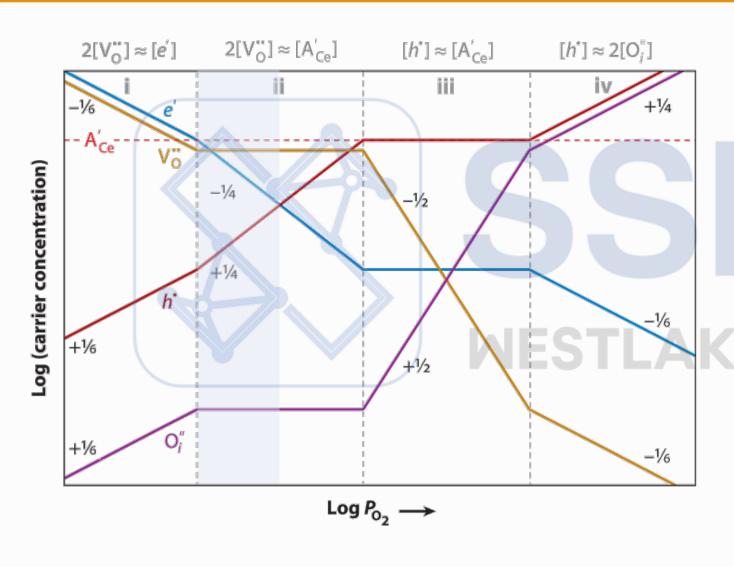
Anand, Haile, Snyder et al., Acc. Mater. Res., 2022

$$\Delta E_{d} = E_{def} - E_{perfect} + qE_{F} - \sum_{i} \Delta N_{i} \mu_{i}$$

Fermi level

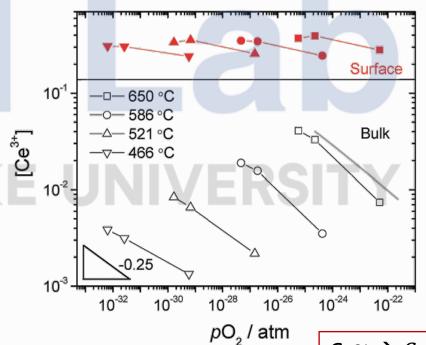
- Very commonly used by semiconductor physicists, especially those who do DFT calculations, since E_F can be used as a tuning parameter;
- Can be used to construct/convert to Brouwer diagrams.

More "realistic" Brouwer diagram w/ Schottky pairs or extrinsic ionic defects



Acceptor-doped $CeO_{2-X-\delta}$ e.g., $Sm_{0.2}Ce_{0.8}O_{1.9-\delta}$

Sm³⁺ replacing Ce⁴⁺ \rightarrow Sm'_{Ce}



Chueh et al., Chem. Mater., 2012

 $Ce^{3+} \rightarrow Ce'_{Ce} \rightarrow e'$ "small polaron"

Defect concentration \rightarrow ionic and electronic conductivity

- Direct measurement of defect concentration can be rather difficult;
- The most common practice is to measure the *conductivity* of materials.

Expression of *conductivity*:

$$\sigma = n \cdot ze \cdot M = cN_A \cdot ze \cdot M = czFM$$

σ : Conductivity

c: Charge carrier concentration; N_A : Avogadro constant; F: Faraday constant

ze: Electric charge, for Li⁺, z = 1

M: Mobility (usually denoted as μ , but not to be confused with chem. potential)

If we assume that the mobility stays constant within a range of chemical potential, then:

 $\sigma \propto c_{def}$

Usually, what we measure is the **total** conductivity σ_{tot} :

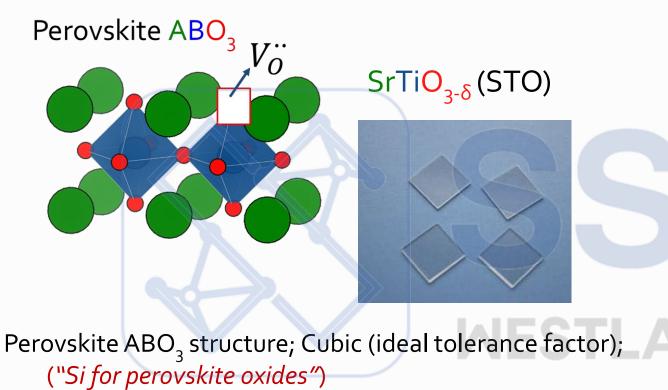
$$\sigma_{tot} = \sigma_{el} + \sigma_{ion}$$

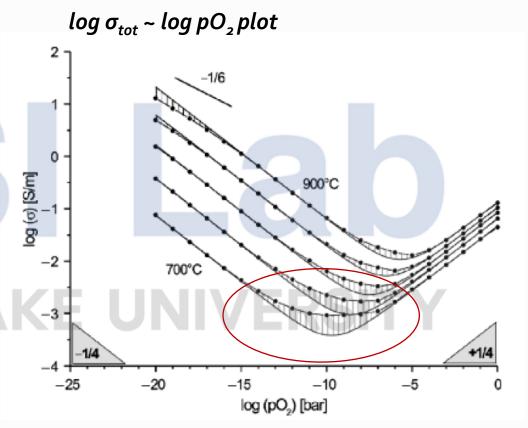
$$\downarrow$$

$$\sigma_{el} = n_e e M_e + n_p e M_h$$

$$\sigma_{ion} = n_{ion} z_{ion} e M_{ion}$$

SrTiO₃ serves as a perfect example to show the log $\sigma \sim \log pO_2$ plot

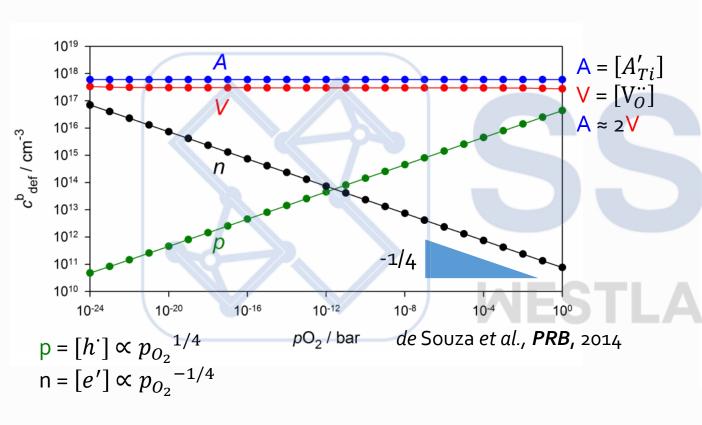


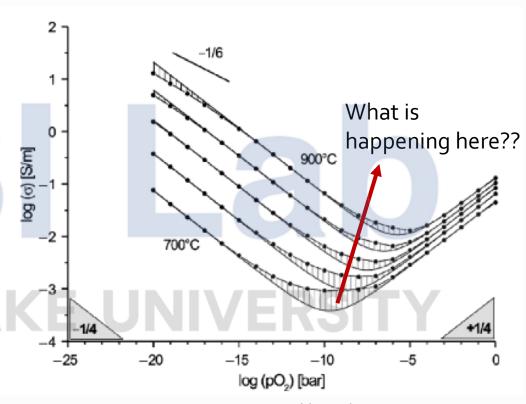


We want to understand:

- Ohly et al., J. Am. Ceram. Soc., 2006
- What do the different slopes tell us about ionic and electronic defect equilibrium?
- What does the shaded area mean?

Ionic and electronic conductivity of SrTiO₃





Ohly et al., J. Am. Ceram. Soc., 2006

$$\sigma_{tot} = ne\mu_e + pe\mu_h + V(Z_V e)\mu_V$$

At ~973 K for SrTiO₃:
 μ_e , μ_h ~ 0.1 cm²/(V·s) vs. μ_V ~ 4 x 10⁻⁴ cm²/(V·s)

"Band-to-band"

Brouwer diagram for lithium storage materials

For a lithium-storage material *LiX* that can tolerate both *Li-excess and*

Li-deficiency, we consider four point defects: Li'_i , V'_{Li} , e', h

Frenkel pair $null \leftrightharpoons Li_i + V'_{Li}$

null = e' + h'

Li intercalation $Li = Li_i + e$

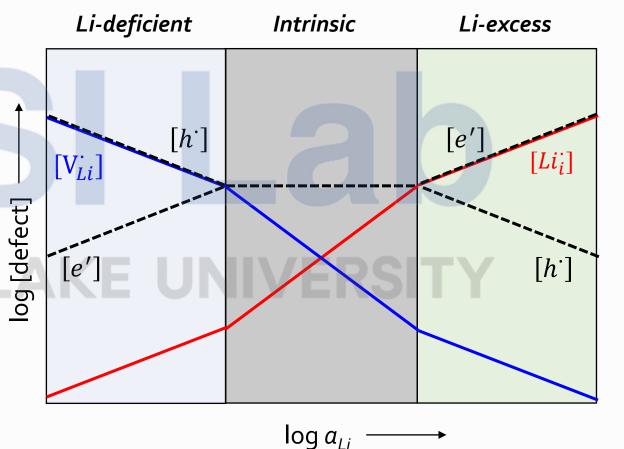
 $Li \leftrightharpoons Li_i' + e'$ $K_{Li} = \frac{[Li_i'][e']}{a_{Li}}$

 $K_F = [Li_i'][V_{Li}]$

 $K_{el} = [e'][h']$

$$\mu_{Li} = \mu_{Li}^0 + RT ln a_{Li}$$

We assume $K_{el} \gg K_F$ (small bandgap)

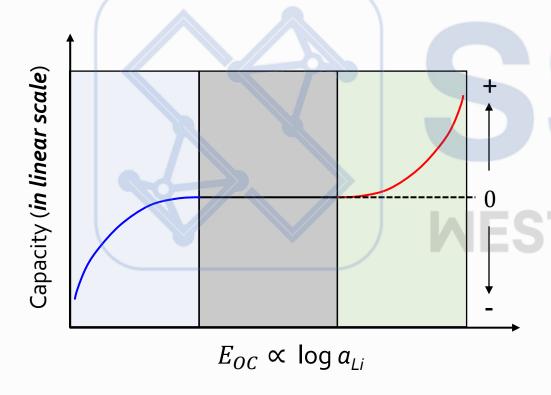


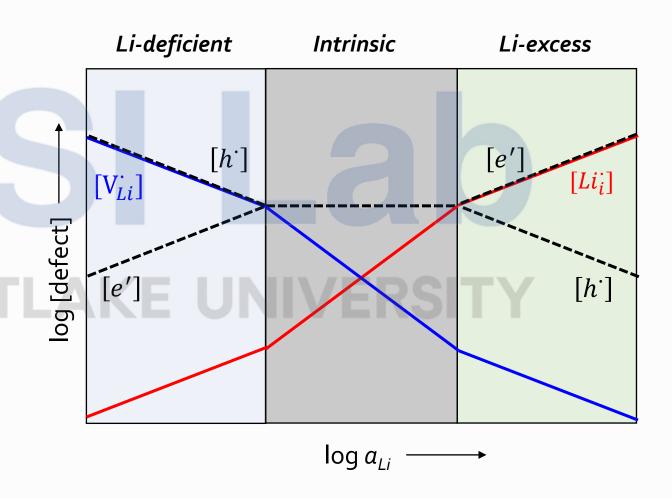
What can we get from such a Brouwer diagram?

For Li-ion battery materials, we have:

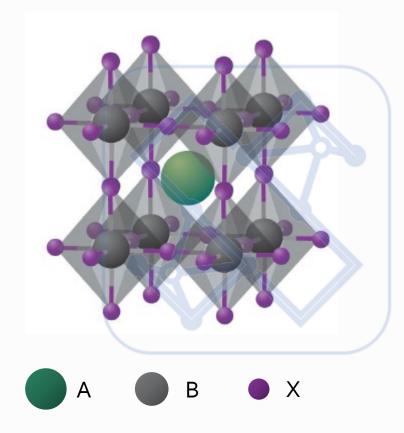
Charge stored: $Q \propto |[Li_i] - [V_{Li}]|$

Open-circuit potential: $E_{OC} \propto \mu_{Li} \propto \ln a_{Li}$





Brouwer diagrams for halide perovskites



e.g. Methylammonium lead iodide CH₃NH₃PbI₃ (MAPbI₃)

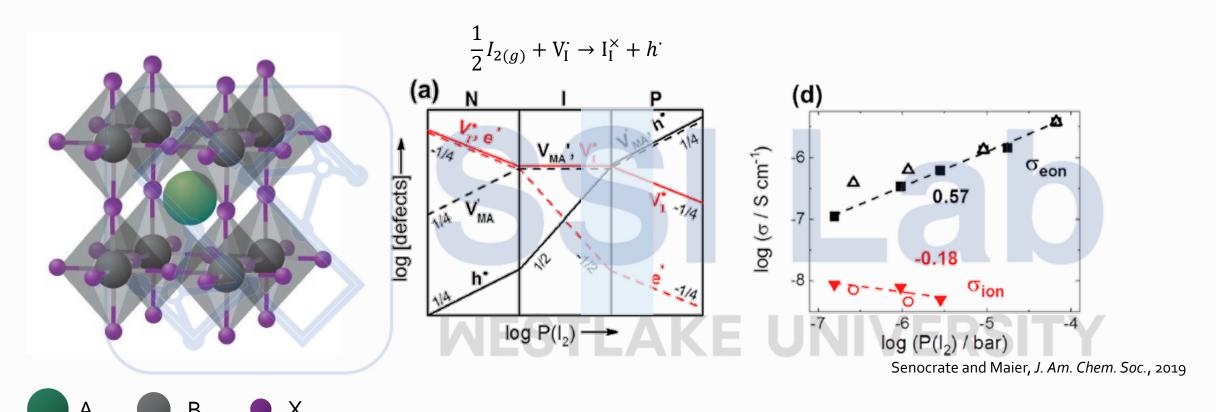
Why do halide perovskites attract so much attention?

- Wide range in composition design: from inorganic compound (e.g. CsPbl₃) to organo-metallic compound (e.g. MAPbl₃);
- High light absorption coefficient + very long diffusion length of electrons and holes (i.e., very low charge recombination rate)

Since halide perovskites are called "ionic semiconductors", we should be able to understand from the perspective of defect chemistry:

- Halide perovskites are mixed ionic-electronic conductors. Therefore, it is important to differentiate ionic and electronic conductivities;
- Peculiar ion transport behavior under illumination. Ionic conductivity is shown higher under light compared with dark condition.

Brouwer diagrams for halide perovskites: Intrinsic

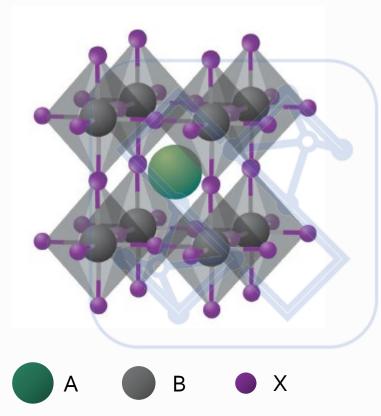


Brouwer diagram of MAPbl₃ Measure ionic (σ_{ion}) and electronic (σ_{eon}) conductivity as a function of pl_2

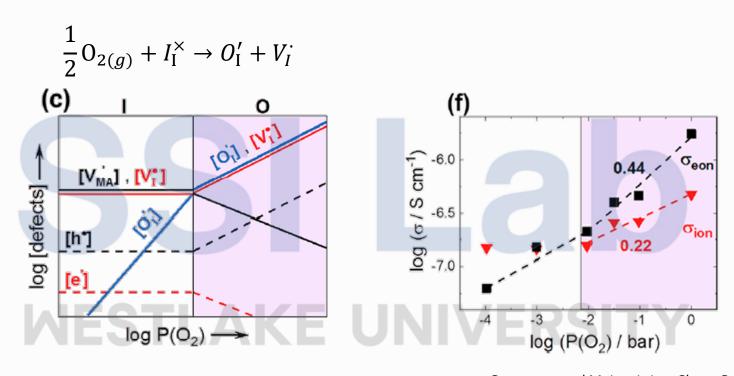
Conclusions:

- The tested pl₂ range is within the I-P transition region in the Brouwer diagram;
 (The measured slope has some uncertainties)
- 2. The dominate ionic mobile defects are the *iodine vacancies*

Brouwer diagrams for halide perovskites: Intrinsic



Brouwer diagram of MAPbI₃ Measure ionic (σ_{ion}) and electronic (σ_{eon}) conductivity as a function of pO_2



Senocrate and Maier, J. Am. Chem. Soc., 2019

Conclusion:

Incorporated O ions act as accept dopants, which increases the electronic conductivity.

Things we have discussed in this lecture

Electronic defects:

- What is the difference between electronic and ionic defects?
- A brief review on basic semiconductor physics: how to write the charge neutrality equation by using Kröger-Vink notations?

Brouwer diagrams:

- What question are we trying to solve by using the Brouwer diagram?
- What is the key assumption of Brouwer diagram (so-called Brouwer condition)?
- How does a typical Brouwer diagram for metal oxides look like? How can it be used to predict/understand the conductivity of materials?

Goal of this lecture: you should be able to answer the questions above now (hopefully):)

