

Things we will discuss in this lecture

Solid-State Electrochemistry:

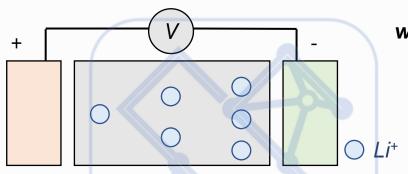
- What determines the open-circuit potential of an electrochemical system?
- How to build a model to predict the open-circuit potential for Li-ion battery cathode materials?
- What are the basic assumptions for the lattice gas model?

WESTLAKE UNIVERSITY

Goal of this lecture: you should be able to answer the questions above by the end of this lecture :)

The concept of electrochemical potential and equilibrium condition of charged particles

Thought experiment: what happens when a voltage is applied between to parallel electrodes?



w/ an applied voltage: concentration gradient forms

$$J_{tot} = -\frac{cM}{zF} \frac{\partial (\mu + zF\phi)}{\partial x} = -\frac{\sigma}{z^2F^2} \frac{\partial (\mu + zF\phi)}{\partial x} = -\frac{\sigma}{z^2F^2} \frac{\partial (\widetilde{\mu})}{\partial x}$$
$$(\sigma = czFM)$$

 $\tilde{\mu} = \mu + zF\phi$

Electrochemical potential

Unit: J/mol (or eV/mol)

Chemical potential

Unit: J/mol (or eV/mol)

Electrostatic potential

Unit: V

F: ~96500 C/mol

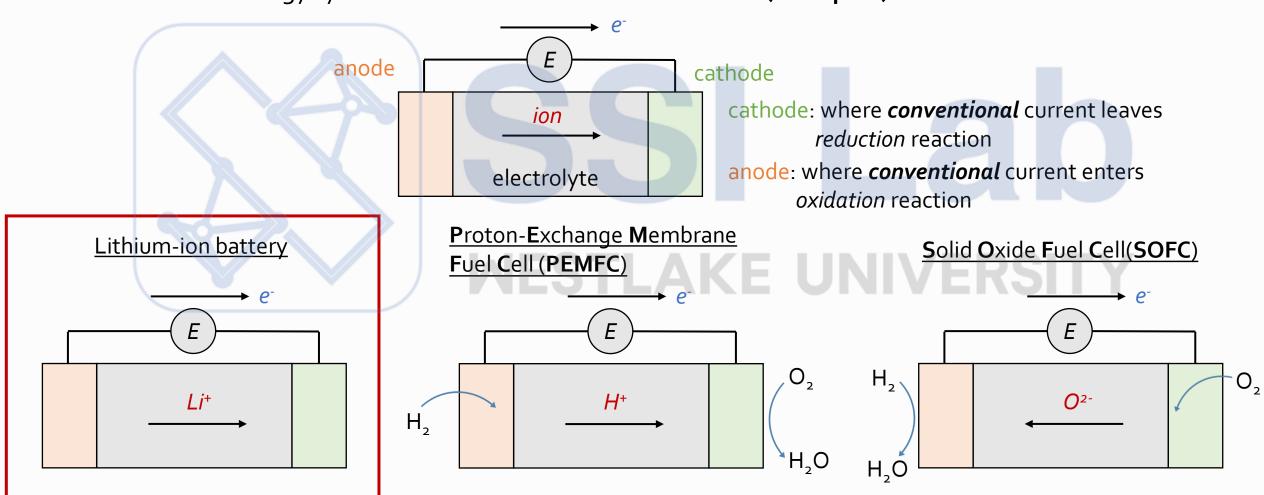
At equilibrium: $J_{tot} = 0 \rightarrow \frac{\partial(\widetilde{\mu})}{\partial x} = 0$

For charged species, the equilibrium condition is that the gradient of **electrochemical potential** $\widetilde{\mu}$ is o

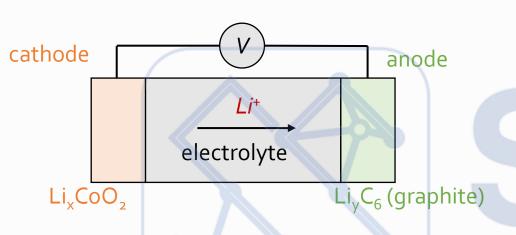
For charge neutral species (such as Li or ${\rm O_2}$), $\widetilde{\mu}$ is reduced to μ

Applications to Electrochemical Energy Systems

Electrochemical energy systems are based on concerted motion (transport) of ions + electrons



Question: how to understand the open circuit voltage (OCV)?

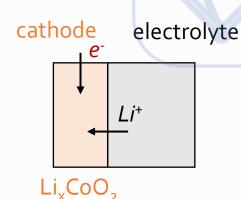


We already know:

- 1. A voltameter measure the difference of *electrochemical potential of electrons* $(\tilde{\mu}_{e^-})$;
- 2. OCV = $(\tilde{\mu}_e$ - $(anode) \tilde{\mu}_e$ -(cathode))/F

Following question:

What parameters are $\tilde{\mu}_e$ -(anode) and $\tilde{\mu}_e$ -(cathode) related to?



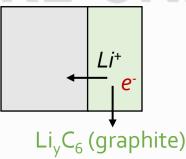
 $Li^+ + e^- \rightarrow Li (in Li_x CoO_2)$

$$\tilde{\mu}_{e^{-}}(c) + \tilde{\mu}_{Li}(lyte) = \mu_{Li}(c)$$

Overall: ("rocking-chair")

 $Li (in C_6) \rightarrow Li (in Li_yCoO_2)$

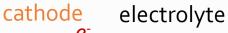
electrolyte anode

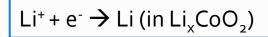


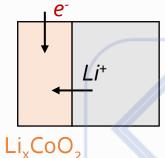
Li (in
$$Li_yC_6$$
) \rightarrow $Li^+ + e^-$

$$\mu_{Li}(a) = \tilde{\mu}_{e^{-}}(a) + \tilde{\mu}_{Li^{+}}(lyte)$$

Question: how to understand the open circuit voltage (OCV)?



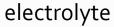




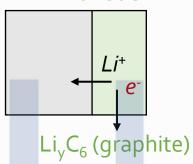
$$\tilde{\mu}_{e^{-}}(c) + \tilde{\mu}_{Li^{+}}(lyte) = \mu_{Li}(c)$$

Overall: ("rocking-chair")

Li (in
$$Li_xC_6$$
) \rightarrow Li (in Li_yCoO_2)



anode



Li (in
$$\text{Li}_{y}\text{C}_{6}$$
) \rightarrow Li^{+} + e^{-}

$$\mu_{Li}(a) = \tilde{\mu}_{e^{-}}(a) + \tilde{\mu}_{Li^{+}}(lyte)$$

Since the electrolyte can conduct Li⁺ (but not e⁻), at equilibrium **electrochemical potential of Li**⁺ $\tilde{\mu}_{Li}$ ⁺ (lyte) is

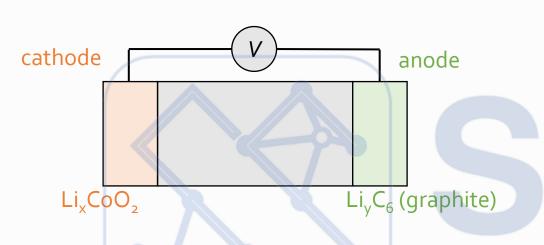
uniform in the electrolyte, *i.e.*,
$$\frac{\partial \widetilde{\mu}_{Li^+}(lyte)}{\partial x} = 0$$

$$\mu_{Li}(a) = \tilde{\mu}_{e^{-}}(a) + \tilde{\mu}_{Li^{+}}(lyte)$$

$$\tilde{\mu}_{e^{-}}(c) + \tilde{\mu}_{Li^{+}}(lyte) = \mu_{Li}(c)$$

$$OCV = -\frac{1}{F} \left(\tilde{\mu}_{e^{-}}(c) - \tilde{\mu}_{e^{-}}(a) \right)$$
$$= -\frac{1}{F} \left(\mu_{Li}(c) - \mu_{Li}(a) \right)$$

Question: how to understand the open circuit voltage (OCV)?



Overall reaction: ("rocking-chair battery")

Li (in
$$Li_xC_6$$
) \rightarrow Li (in Li_yCoO_2)

Gibbs free energy (per mole) of the reaction: $AC_{i} = (x, y) = u_{i} (x, y) =$

$$\Delta G_{rxn}(x,y) = \mu_{Li}(c, Li_x CoO_2) - \mu_{Li}(a, Li_y C_6)$$

$$OCV = -\frac{1}{F} \left(\mu_{Li}(c) - \mu_{Li}(a) \right) = -\frac{1}{F} \Delta G_{rxn}(x, y)$$

If we know how $\mu_{Li}(c)$ changes as a function of composition x and how $\mu_{Li}(c)$ changes as a function of composition y, then we can predict the OCV.

 $\Delta G_{rxn}(x,y)$ has to be **negative** to make the OCV **positive**; In other words, the overall reaction must be **spontaneous** to be used in an electrochemical cell for energy extraction.

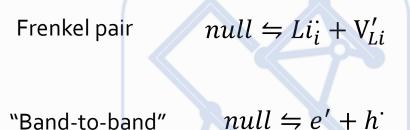
Brouwer diagram for lithium storage materials

For a lithium-storage material *LiX* that can tolerate both *Li-excess and*

 $K_F = [Li_i'][V_{Li}]$

 $K_{el} = [e'][h']$

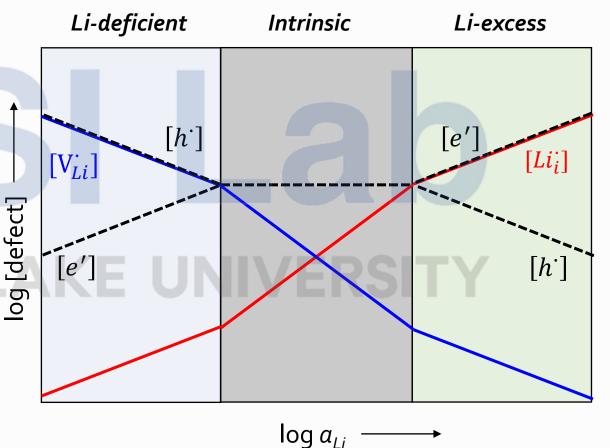
Li-deficiency, we consider four point defects: Li'_i , V'_{Li} , e', h



Li intercalation
$$Li \leftrightharpoons Li_i^{\cdot} + e^{\prime}$$
 $K_{Li} = \frac{[Li_i^{\cdot}][e^{\prime}]}{a_{Li}}$

$$\mu_{Li} = \mu_{Li}^0 + RT ln a_{Li}$$

We assume $K_{el} \gg K_F$ (small bandgap)

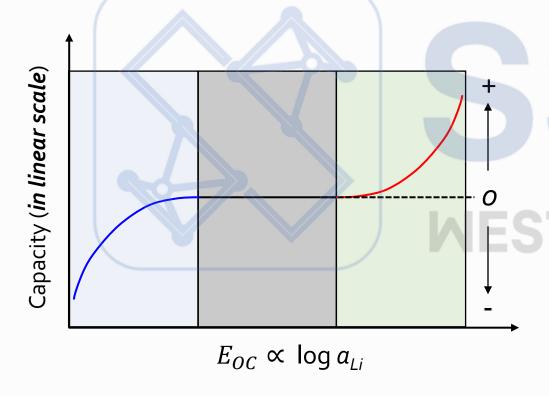


What can we get from such a Brouwer diagram?

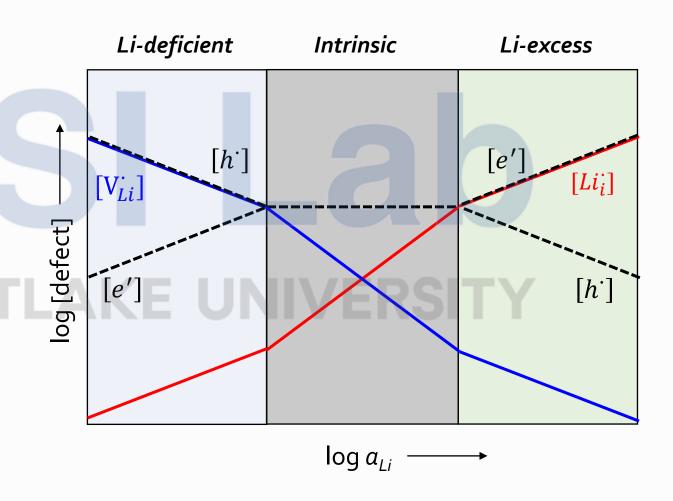
For Li-ion battery materials, we have:

Charge stored: $Q \propto |[Li_i] - [V_{Li}]|$

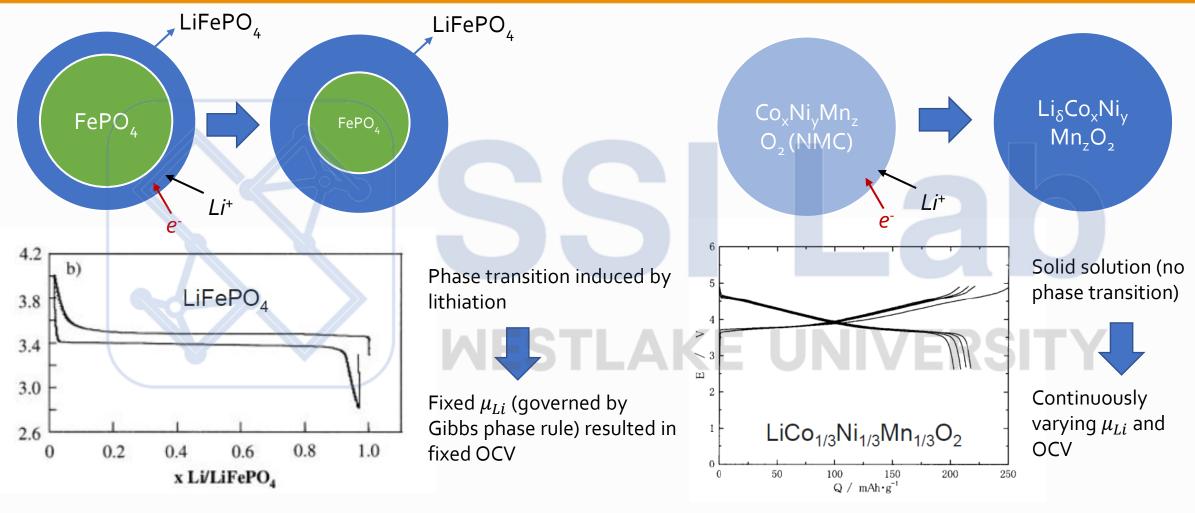
Open-circuit potential: $E_{OC} \propto \mu_{Li} \propto \ln a_{Li}$



Simulated battery charge/discharge curves (!)



What factors influence the chemical potential of Li in electrodes?

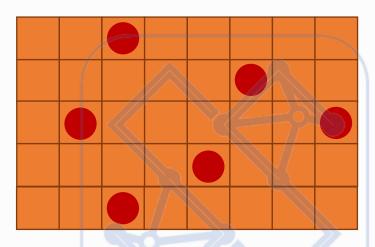


Huang, Nazar et al., Electrochem. and Solid-state Lett., 2001

Yabuuchi et al., Journal of Power Sources, 2013

How to model the chemical potential of Li in electrode?

Ideal Lattice Gas Model





Key assumptions:

- Model intercalated Li as non-interacting gas molecules occupying the lattice sites;
- Concentrated system (i.e., model activity correction);

We use N to denote # of total sites and n to denote Li-occupied sites, then:

G(x) = H - TS (where x = n/N, and we use x = 0 as a reference state)

non-interacting
$$\rightarrow H = 0$$

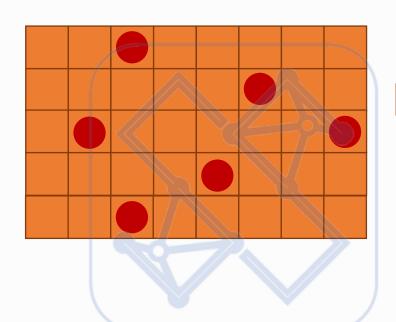
$$S = S_{cfg} = k_B ln\Omega$$

$$S = S_{cfg} = k_B ln\Omega$$
 $\Omega = {n \choose N} = \frac{N!}{n! (N-n)!}$

(or $H = h_0 x$, the same conclusion)

Calculate configurational entropy and chemical potential

Ideal Lattice Gas Model



Configurational entropy

$$S_{cfg} = k_B ln\Omega = k_B ln(\frac{N!}{n! (N-n)!})$$

Stirling Approximation: $\ln N! \approx N \ln N - N$, then:

$$S_{cfg}$$

$$= k_B(N \ln N - N - n \ln n + n - (N - n) \ln(N - n) + (N - n))$$

$$G(x) = -TS = -k_B T \left(N \ln \frac{N}{N-n} - n \ln \frac{n}{N-n} \right) \xrightarrow{x = n/N} = -k_B T N \left(\ln \frac{1}{1-x} - x \ln \frac{x}{1-x} \right)$$

= lattice site

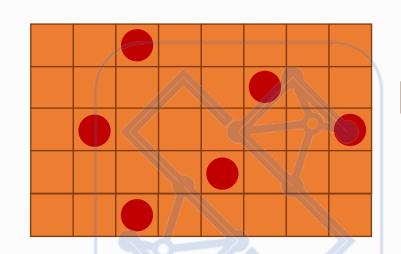
$$G(x) = k_B T N(x \ln x + (1 - x) \ln(1 - x))$$

$$\mu(x) = \frac{1}{N} \frac{\partial G}{\partial x} = k_B T ln(\frac{x}{1-x})$$

Expression of chemical potential using the lattice gas model

Calculate configurational entropy and chemical potential

Ideal Lattice Gas Model



$$\mu(x) = k_B T ln(\frac{x}{1-x})$$

Expression of *chemical potential* using the lattice gas model

Another way to look at this:

$$\mu = k_B T ln(\gamma x)$$
 \longrightarrow activity coefficient $\gamma = \frac{1}{1-x}$

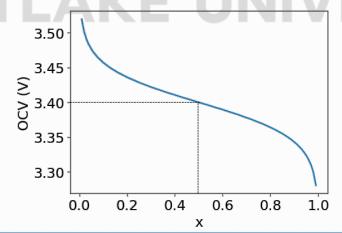
Correction for concentrated solution

If we assume that μ_{Li} of anode stays constant, then we have OCV expression:

= lattice site

$$OCV = -\frac{1}{e} \left(\mu_{Li}(x, cathode) - \mu_{Li,anode} \right)$$
$$= E^{0} - \frac{k_{B}T}{e} ln(\frac{x}{1-x})$$

At room temperature, $\frac{k_BT}{e} = 26 \ mV$

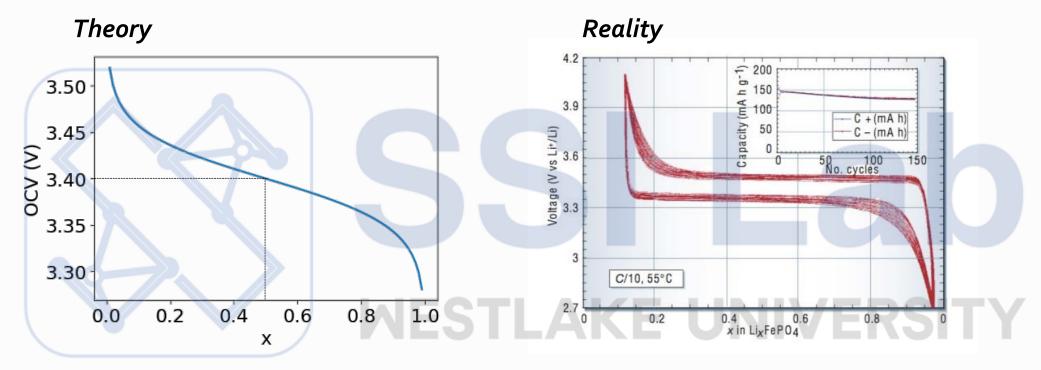


In the plot on the left, we have:

$$E^0 = 3.4 V$$

When
$$x = \frac{1}{2}$$
, OCV = E^{0}

Compare predicted OCV~x curve with the real case

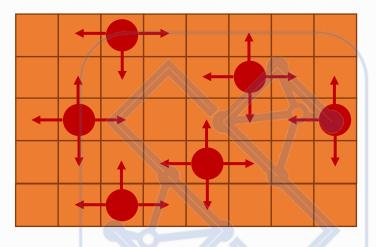


Tarascon, J.-M., and M. Armand. "Issues and challenges facing rechargeable lithium batteries." *Nature* 414 (2001): 359-367

- Not too bad for such a simple theory with A LOT of assumptions;
- How to explain the plateau in the charge-discharge curves?

How to model the chemical potential of Li in electrode?

Regular Solution Model



$$= Li$$

$$G(x) = H - TS$$

- In the ideal lattice gas model, we assume that there is no interactions between $Li \rightarrow H = 0$
- We can relax this assumption by defining an enthalpy term (regular solution) $\rightarrow H = h_0 N x (1 x)$

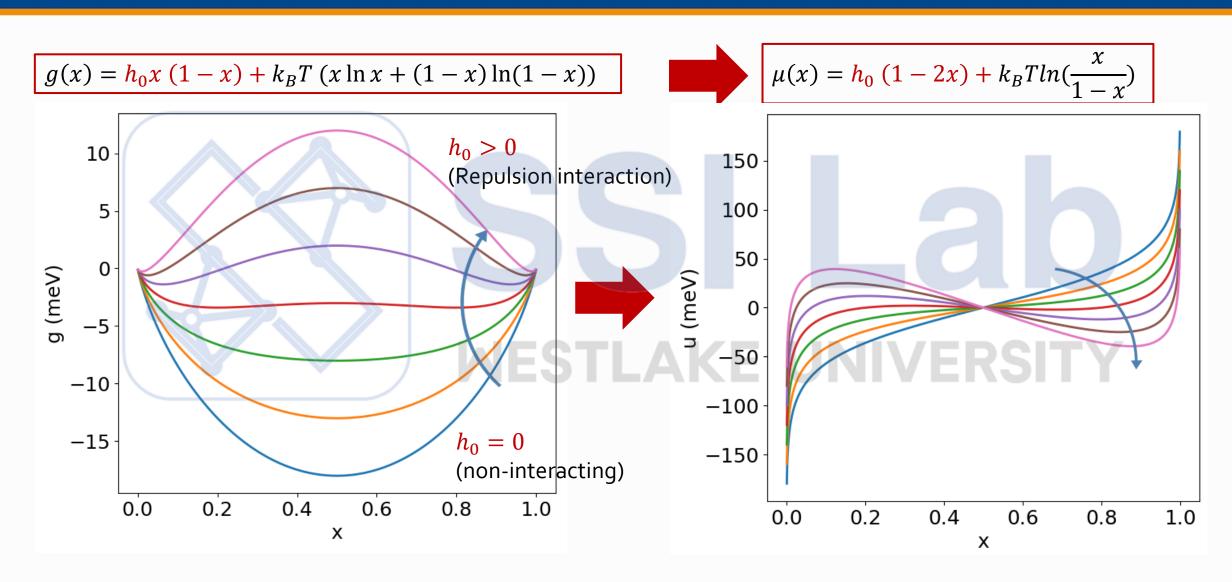
$$G(x) = h_0 Nx (1 - x) + k_B T N(x \ln x + (1 - x) \ln(1 - x))$$

$$\mu(x) = \frac{1}{N} \frac{\partial G}{\partial x} = h_0 \left(1 - 2x \right) + k_B T \ln\left(\frac{x}{1 - x}\right)$$

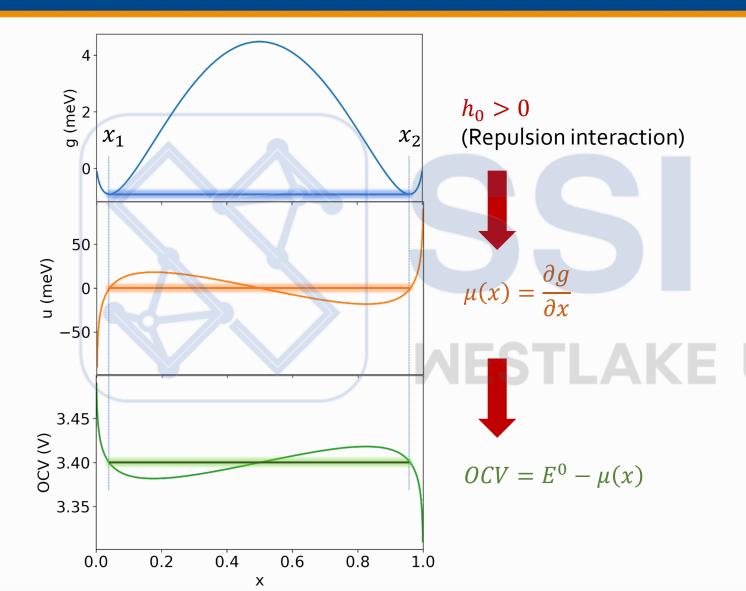
$$OCV = E^{0} + \frac{h_{0}}{e}(2x - 1) - \frac{k_{B}T}{e}ln(\frac{x}{1 - x})$$

Note: h_0 can be positive (repulsion) or negative (attraction), but the former is more common

The effect of enthalpic and entropic terms in regular solution model



Phase separation and voltage plateau in charge curves



At equilibrium, any overall composition between x_1 and x_2 will be decomposed into a mixed phase of x_1 and x_2

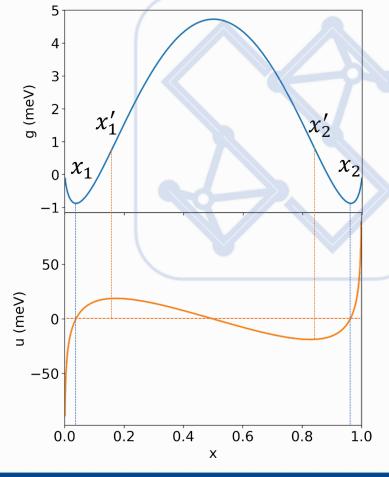
Therefore, if there is no kinetic effect (charge/discharge at very slow rate), then μ will be a flat line when $x_1 < x < x_2$

A constant OCV in the charge curve is then indicative of phase transitions in battery electrodes

Spinodal decomposition

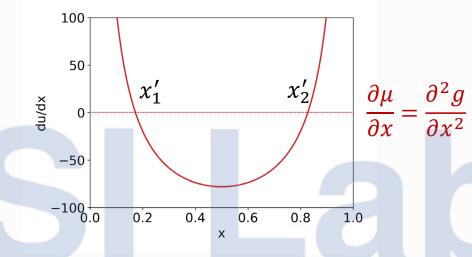
Let's look at the Gibbs free energy curve again

$$g(x) = h_0 x (1 - x) + k_B T (x \ln x + (1 - x) \ln(1 - x))$$

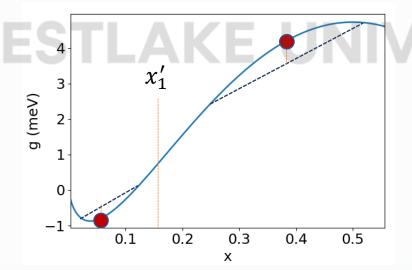


In this case, we set $h_0 = 3.5 k_B T$

$$\mu(x) = \frac{\partial g}{\partial x}$$



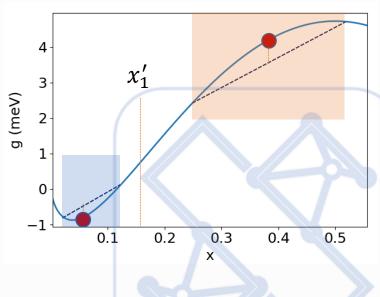
Chemical potential μ is the *derivative* of Gibbs free energy g

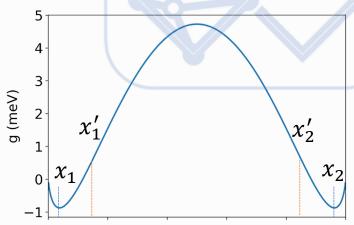


 $0 < x < x'_1$: phase separation needs to overcome a **barrier**;

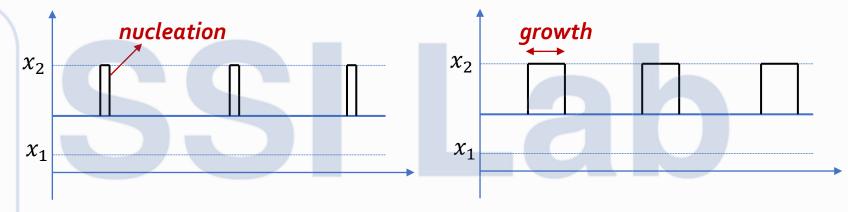
 $x_1' < x < x_2'$: phase separation is **spontaneous**; so-called spinodal decomposition

Spinodal decomposition: small or large fluctuation in composition

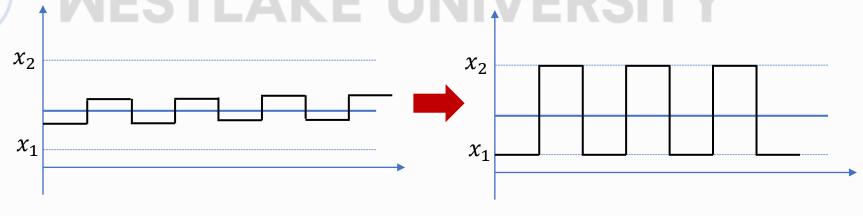




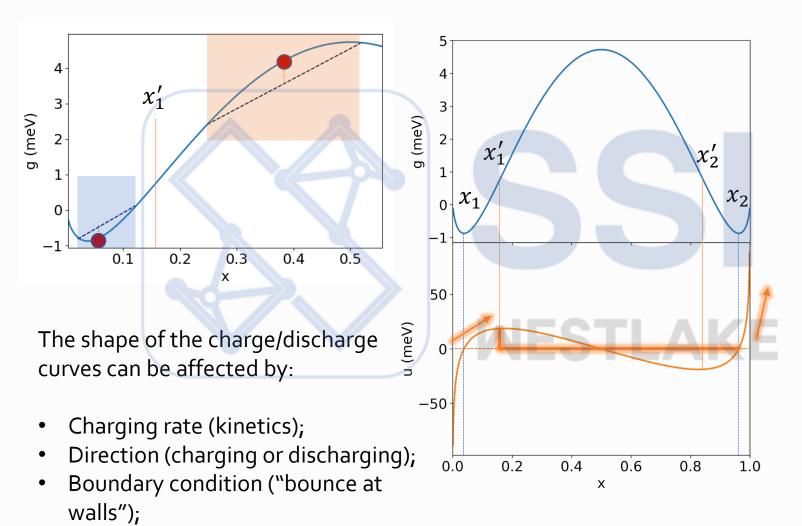
 $0 < x < x_1'$: phase separation needs to overcome a **barrier** \rightarrow needs a large fluctuation in composition



 $x_1' < x < x_2'$: phase separation is **spontaneous**; so-called **spinodal decomposition**

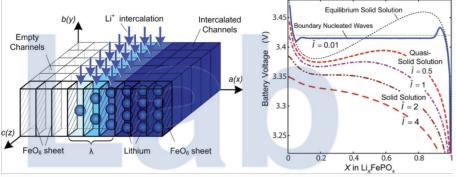


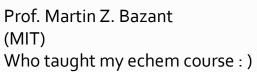
Coming back to the charge/discharge curves



Further reading:

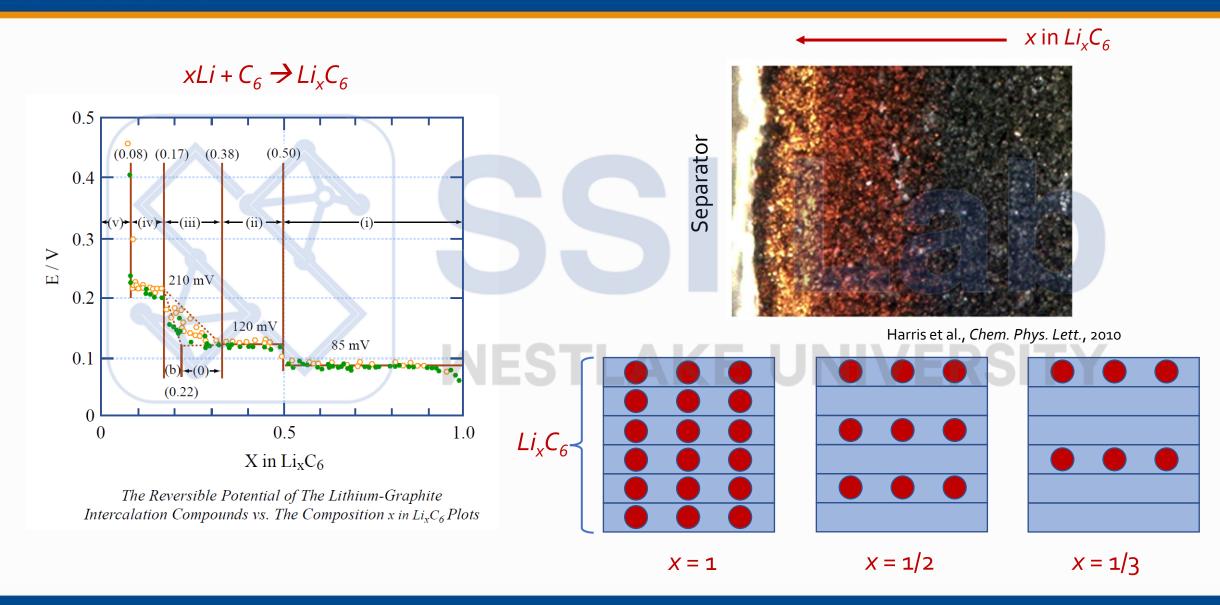
Peng Bai and Martin Z. Bazant, *Nano Lett.*, 2011, 11, 11, 4890–4896





Prof. Peng Bai (Washington University in St. Loiuis)

Multiple phase separations: the case of lithiated graphite



Things we have discussed in this lecture

Solid-State Electrochemistry:

- What determines the open-circuit potential of an electrochemical system?
- How to build a model to predict the open-circuit potential for Li-ion battery cathode materials?
- What are the basic assumptions for the lattice gas model?

WESTLAKE UNIVERSITY

Goal of this lecture: you should be able to answer the questions above now (hopefully):)

