Fall 2023 Solid State Ionics

Homework 3

TA: Jieping Zheng
Posted: 2023/12/05
Due: 2023/12/19

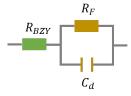
Problem 1: Open-circuit potential of a "hydrogen battery"

Consider an electrochemical cell with electrochemical reactions at the cathode and anode as shown below:

Cathode: $xH^{+} + xe^{-} + AO_{3} \rightarrow H_{x}AO_{3}$ Anode: $x/2 H_{2} \rightarrow xH^{+} + xe^{-}$

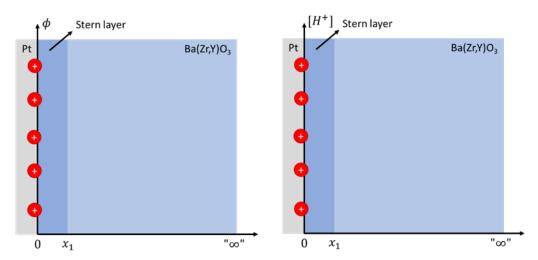
 AO_3 denotes a transition metal oxide (e.g., WO₃ or MoO₃) which can accommodate a certain amount of H in the oxide lattice (0 < x < 1 in H_xAO_3 and the maximum concentration of H is reached when x = 1).

- 1. If we assume the chemical potential of charge neutral species H is 0 at the anode (i.e., $\mu_{H,a}=0~eV$), express the open circuit potential of such a hydrogen battery as a function of chemical potential of H at the cathode $\mu_{H,c}$.
- 2. If we model the cathode oxide H_xAO_3 by using the *ideal lattice gas model*, write down the expression of and plot
 - 1) Entropy S per lattice site;
 - 2) Gibbs free energy **G** per lattice site;
 - 3) Chemical potential μ ;
 - 4) Open-circuit potential (OCP) **E** as a function of concentration **x**.
- 3. If we model the cathode oxide H_xAO_3 by using the **regular solution model**. If the enthalpy per lattice site has the form of $H=h_0x(1-x)$. For the phase separation case, write down the expression and plot
 - 1) Entropy **S** per lattice site;
 - 2) Gibbs free energy **G** per lattice site;
 - 3) Chemical potential μ as a function of concentration x.
 - 4) In the plots, show the points of the two concentrations for the stable phases x_1 and x_2 .
 - 5) Try to point out in the plots (qualitatively) the range of concentration x where the phase separation is spontaneous and barrierless (*i.e.*, spinodal decomposition)
- 4. Following the phase separation case above in question 3, draw the plot of open-circuit potential (OCP) *E* vs. concentration *x*, assuming that the nucleation can occur easily (*i.e.*, phase separation can be triggered outside the spinodal region).
- 5. Now let's assume that the nucleation is difficult, and the phase separation is only spontaneous within the spinodal decomposition region. Try to draw the OCP *E* ~ concentration *x* for charging (*x* changed from 1 to 0) and discharging (*x* changed from 0 to 1) processes and explain why the charging/discharging curves look different.


Problem 2: Frumkin effect at Pt/Ba(Zr,Y)O₃ interfaces

Consider the electrochemical interfaces of a Pt electrode and a Ba(Zr,Y)O₃ (BZY) electrolyte. Hydrogen gas (H_2) can be dissociated and adsorbed at the Pt electrode forming adsorbed H_{ads} and then go through electrochemical reaction to protons and electrons as the Ba(Zr,Y)O₃ (BZY) electrolyte is proton-containing. The electrochemical reaction can be written as below:

$$\boxed{H^+ + e^- \rightleftharpoons H_{ads}} \quad E^{0\prime} = 0 \ V$$


The forward reaction is cathodic (hydrogen evolution), and the backward reaction is anode (hydrogen oxidation).

- 1. Assume that the diffusion in the BZY electrolyte is fast and there is no space charge layer at the Pt/BZY interface, write down the Bulter-Volmer equation for
 - 1) cathodic (hydrogen evolution) current density jc;
 - 2) anodic (hydrogen oxidation) current density j_a ;
 - 3) the total current density \mathbf{j} as a function of applied potential \mathbf{E} (notice that the formal potential $\mathbf{E}^{o'}$ is 0 V), the bulk concentration of protons in BZY $[H^+]_{x=\infty}$ and the surface coverage of \mathbf{H}_{ads} $\theta_{H_{ads}}$ ($\theta_{H_{ads}}$ can be treated as the concentration of \mathbf{H}_{ads}). Assume that the symmetry coefficient $\alpha = 1/2$.
- 2. 1) Write down the Nernst equation for the electrochemical reaction $H^+ + e^- \rightleftharpoons H_{ads}$.
 - 2) If the overpotential η is defined as $\eta = E E_{eq}$, rewrite the Bulter-Volmer equation of the current density j using η rather than E.
 - 3) Derive the expression of exchange current density jo
- 3. If the overpotential η is **small**, then $j \eta$ curve can be **linearized**.
 - 1) Derive the charge transfer (Faradaic) resistance $R_F = \eta/j$ under this limit.
 - 2) For the Pt/BZY electrochemical cell, the impedance of the system can be modeled using the equivalent circuit below:

In the circuit, R_{BZY} is the Ohmic resistance of the electrolyte, R_F is the Faradaic resistance and C_d denotes the double layer capacitance. Derive the complex impedance $(Z(\omega))$ and draw a Nyquist plot $(Z'(\omega) \sim -Z''(\omega))$ and mark the intercepts with the real axis in the plot.

- 4. Assume that a positively charged space charge core exists at the Pt/BZY interface. Consider the case that both a stern layer (linearly varying electrostatic potential) and a diffuse layer (Gouy-Chapman case) coexist. In the figures below, try to sketch
 - 1) electrostatic potential distribution;
 - 2) H⁺ concentration distribution (*only in the diffuse layer*). Assume that H⁺ is the only mobile positive charged defect.

- 5. Consider the case that the *cathodic* current density is much higher than the anodic current $(j \approx j_c)$. If the space charge exists as shown in question 3, and the electrochemical reaction occurs at $\mathbf{x} = \mathbf{x_1}$, try to rewrite the expression of \mathbf{j} as a function of $[H^+]_{x=\infty}$ and the electrostatic potential at $\mathbf{x} = \mathbf{x_1}$ ($\mathbf{\phi_1}$). Assume that the symmetry coefficient $\alpha = 1/2$. *Note:* you can either use \mathbf{E} or $\mathbf{\eta}$ in the Bulter-Volmer equation, but remember that $\mathbf{E}^{0'}$ or \mathbf{E}_{eq} is changed since $[H^+]_{x=\infty} \neq [H^+]_{x=x_1}$.
- 6. Derive the expression of the Tafel slope (the slope of $\ln j \sim \eta$) with the Frumkin effect as shown in question 4. Show and explain why the Tafel slope is not a constant anymore.